Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 21 July 2009
Vol. 2, Issue 80, p. ra35
[DOI: 10.1126/scisignal.2000369]

RESEARCH ARTICLES

SIK1 Couples LKB1 to p53-Dependent Anoikis and Suppresses Metastasis

Hailing Cheng1,2, Pixu Liu1,2*, Zhigang C. Wang1,3*, Lihua Zou1,3*, Stephanie Santiago1,2, Victoria Garbitt1,2, Ole V. Gjoerup4, J. Dirk Iglehart1,3, Alexander Miron1,3, Andrea L. Richardson1,3, William C. Hahn5,6,7{dagger}, and Jean J. Zhao1,2,3{dagger}

1 Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
2 Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
3 Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA.
4 Molecular Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
5 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
6 Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
7 Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.

* These authors contributed equally to this work.

Abstract: Resistance to anoikis, the subtype of apoptosis triggered by lack of adhesion, contributes to malignant transformation and the development of metastasis. Although several lines of evidence suggest that p53 plays a critical role in anoikis, the pathway(s) that connect cell detachment to p53 remain undefined. Here, through the use of a kinome-wide loss-of-function screen, we identify the serine-threonine kinase SIK1 (salt-inducible kinase 1) as a regulator of p53-dependent anoikis. Inactivation of SIK1 compromised p53 function in anoikis and allowed cells to grow in an anchorage-independent manner. In vivo, SIK1 loss facilitated metastatic spread and survival of disseminated cells as micrometastases in lungs. The presence of functional SIK1 was required for the activity of the kinase LKB1 in promoting p53-dependent anoikis and suppressing anchorage-independent growth, Matrigel invasion, and metastatic potential. In human cancers, decreased expression of the gene encoding SIK1 closely correlated with development of distal metastases in breast cancers from three independent cohorts. Together, these findings indicate that SIK1 links LKB1 to p53-dependent anoikis and suppresses metastasis.

{dagger} To whom correspondence should be addressed. E-mail:jean_zhao{at}dfci.harvard.edu (J.J.Z) and william_hahn{at}dfci.harvard.edu (W.C.H.)

Citation: H. Cheng, P. Liu, Z. C. Wang, L. Zou, S. Santiago, V. Garbitt, O. V. Gjoerup, J. D. Iglehart, A. Miron, A. L. Richardson, W. C. Hahn, J. J. Zhao, SIK1 Couples LKB1 to p53-Dependent Anoikis and Suppresses Metastasis. Sci. Signal. 2, ra35 (2009).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Contribution of p53 to Metastasis.
E. Powell, D. Piwnica-Worms, and H. Piwnica-Worms (2014)
Cancer Discovery 4, 405-414
   Abstract »    Full Text »    PDF »
AMPK: A Contextual Oncogene or Tumor Suppressor?.
J. Liang and G. B. Mills (2013)
Cancer Res. 73, 2929-2935
   Abstract »    Full Text »    PDF »
Supervillin-mediated Suppression of p53 Protein Enhances Cell Survival.
Z. Fang and E. J. Luna (2013)
J. Biol. Chem. 288, 7918-7929
   Abstract »    Full Text »    PDF »
Mechanisms that link the oncogenic epithelial-mesenchymal transition to suppression of anoikis.
S. M. Frisch, M. Schaller, and B. Cieply (2013)
J. Cell Sci. 126, 21-29
   Abstract »    Full Text »    PDF »
Lkb1 regulates organogenesis and early oncogenesis along AMPK-dependent and -independent pathways.
B. Lo, G. Strasser, M. Sagolla, C. D. Austin, M. Junttila, and I. Mellman (2012)
J. Cell Biol. 199, 1117-1130
   Abstract »    Full Text »    PDF »
Salt-inducible kinase 1 regulates E-cadherin expression and intercellular junction stability.
K. Eneling, L. Brion, V. Pinto, M. J. Pinho, J. I. Sznajder, N. Mochizuki, K. Emoto, P. Soares-da-Silva, and A. M. Bertorello (2012)
FASEB J 26, 3230-3239
   Abstract »    Full Text »    PDF »
A Pathway for the Control of Anoikis Sensitivity by E-Cadherin and Epithelial-to-Mesenchymal Transition.
S. Kumar, S. H. Park, B. Cieply, J. Schupp, E. Killiam, F. Zhang, D. L. Rimm, and S. M. Frisch (2011)
Mol. Cell. Biol. 31, 4036-4051
   Abstract »    Full Text »    PDF »
Making sense of cancer genomic data.
L. Chin, W. C. Hahn, G. Getz, and M. Meyerson (2011)
Genes & Dev. 25, 534-555
   Abstract »    Full Text »    PDF »
Alternative cell death mechanisms in development and beyond.
J. Yuan and G. Kroemer (2010)
Genes & Dev. 24, 2592-2602
   Abstract »    Full Text »    PDF »
Understanding Micrometastatic Disease and Anoikis Resistance in Ewing Family of Tumors and Osteosarcoma.
S. J. Strauss, T. Ng, A. Mendoza-Naranjo, J. Whelan, and P. H. B. Sorensen (2010)
Oncologist 15, 627-635
   Abstract »    Full Text »    PDF »
Tumor Suppression by LKB1: SIK-ness Prevents Metastasis.
R. J. Shaw (2009)
Science Signaling 2, pe55
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882