Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 18 August 2009
Vol. 2, Issue 84, p. ra47
[DOI: 10.1126/scisignal.2000287]


Mitofusin 2 Inhibits Mitochondrial Antiviral Signaling

Kai Yasukawa1, Hiroyuki Oshiumi2, Makoto Takeda3, Naotada Ishihara4, Yusuke Yanagi3, Tsukasa Seya2, Shun-ichiro Kawabata1, and Takumi Koshiba1*

1 Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
2 Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
3 Department of Virology, Faculty of Medicine, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan.
4 Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.

Abstract: The innate immune response to viral infection involves the activation of multiple signaling steps that culminate in the production of type I interferons (IFNs). Mitochondrial antiviral signaling (MAVS), a mitochondrial outer membrane adaptor protein, plays an important role in this process. Here, we report that mitofusin 2 (Mfn2), a mediator of mitochondrial fusion, interacts with MAVS to modulate antiviral immunity. Overexpression of Mfn2 resulted in the inhibition of retinoic acid–inducible gene I (RIG-I) and melanoma differentiation–associated gene 5 (MDA-5), two cytosolic sensors of viral RNA, as well as of MAVS-mediated activation of the transcription factors interferon regulatory factor 3 (IRF-3) and nuclear factor {kappa}B (NF-{kappa}B). In contrast, loss of endogenous Mfn2 enhanced virus-induced production of IFN-β and thereby decreased viral replication. Structure-function analysis revealed that Mfn2 interacted with the carboxyl-terminal region of MAVS through a heptad repeat region, providing a structural perspective on the regulation of the mitochondrial antiviral response. Our results suggest that Mfn2 acts as an inhibitor of antiviral signaling, a function that may be distinct from its role in mitochondrial dynamics.

* To whom correspondence should be addressed. E-mail: koshiba{at}

Citation: K. Yasukawa, H. Oshiumi, M. Takeda, N. Ishihara, Y. Yanagi, T. Seya, S.-i. Kawabata, T. Koshiba, Mitofusin 2 Inhibits Mitochondrial Antiviral Signaling. Sci. Signal. 2, ra47 (2009).

Read the Full Text

Dynamic survey of mitochondria by ubiquitin.
M. Escobar-Henriques and T. Langer (2014)
EMBO Rep. 15, 231-243
   Abstract »    Full Text »    PDF »
Regulation of Mitochondrial Antiviral Signaling (MAVS) Expression and Signaling by the Mitochondria-associated Endoplasmic Reticulum Membrane (MAM) Protein Gp78.
J. L. Jacobs, J. Zhu, S. N. Sarkar, and C. B. Coyne (2014)
J. Biol. Chem. 289, 1604-1616
   Abstract »    Full Text »    PDF »
TRIM14 is a mitochondrial adaptor that facilitates retinoic acid-inducible gene-I-like receptor-mediated innate immune response.
Z. Zhou, X. Jia, Q. Xue, Z. Dou, Y. Ma, Z. Zhao, Z. Jiang, B. He, Q. Jin, and J. Wang (2014)
PNAS 111, E245-E254
   Abstract »    Full Text »    PDF »
Structural basis for the prion-like MAVS filaments in antiviral innate immunity.
H. Xu, X. He, H. Zheng, L. J. Huang, F. Hou, Z. Yu, M. J. de la Cruz, B. Borkowski, X. Zhang, Z. J. Chen, et al. (2014)
eLife Sci 3, e01489
   Abstract »    Full Text »    PDF »
A form of mitofusin 2 (Mfn2) lacking the transmembrane domains and the COOH-terminal end stimulates metabolism in muscle and liver cells.
J. Segales, J. C. Paz, M. I. Hernandez-Alvarez, D. Sala, J. P. Munoz, E. Noguera, S. Pich, M. Palacin, J. A. Enriquez, and A. Zorzano (2013)
Am J Physiol Endocrinol Metab 305, E1208-E1221
   Abstract »    Full Text »    PDF »
Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection.
T. Ichinohe, T. Yamazaki, T. Koshiba, and Y. Yanagi (2013)
PNAS 110, 17963-17968
   Abstract »    Full Text »    PDF »
Recognition of viruses in the cytoplasm by RLRs and other helicases--how conformational changes, mitochondrial dynamics and ubiquitination control innate immune responses.
C. S. Ng, H. Kato, and T. Fujita (2012)
Int. Immunol. 24, 739-749
   Abstract »    Full Text »    PDF »
Mitochondrial Control of Cellular Life, Stress, and Death.
L. Galluzzi, O. Kepp, C. Trojel-Hansen, and G. Kroemer (2012)
Circ. Res. 111, 1198-1207
   Abstract »    Full Text »    PDF »
Influenza Virus Protein PB1-F2 Inhibits the Induction of Type I Interferon by Binding to MAVS and Decreasing Mitochondrial Membrane Potential.
Z. T. Varga, A. Grant, B. Manicassamy, and P. Palese (2012)
J. Virol. 86, 8359-8366
   Abstract »    Full Text »    PDF »
Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis.
D. Sebastian, M. I. Hernandez-Alvarez, J. Segales, E. Sorianello, J. P. Munoz, D. Sala, A. Waget, M. Liesa, J. C. Paz, P. Gopalacharyulu, et al. (2012)
PNAS 109, 5523-5528
   Abstract »    Full Text »    PDF »
Mitochondria and cell signalling.
S. W. G. Tait and D. R. Green (2012)
J. Cell Sci. 125, 807-815
   Abstract »    Full Text »    PDF »
MIP-T3 Is a Negative Regulator of Innate Type I IFN Response.
M.-H. J. Ng, T.-H. Ho, K.-H. Kok, K.-L. Siu, J. Li, and D.-Y. Jin (2011)
J. Immunol. 187, 6473-6482
   Abstract »    Full Text »    PDF »
ER Tubules Mark Sites of Mitochondrial Division.
J. R. Friedman, L. L. Lackner, M. West, J. R. DiBenedetto, J. Nunnari, and G. K. Voeltz (2011)
Science 334, 358-362
   Abstract »    Full Text »    PDF »
SevERing Mitochondria.
A. S. Rambold and J. Lippincott-Schwartz (2011)
Science 334, 186-187
   Abstract »    Full Text »    PDF »
Mitochondria in innate immunity.
D. Arnoult, F. Soares, I. Tattoli, and S. E. Girardin (2011)
EMBO Rep. 12, 901-910
   Abstract »    Full Text »    PDF »
Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus.
S. M. Horner, H. M. Liu, H. S. Park, J. Briley, and M. Gale Jr. (2011)
PNAS 108, 14590-14595
   Abstract »    Full Text »    PDF »
Mitochondrial Membrane Potential Is Required for MAVS-Mediated Antiviral Signaling.
T. Koshiba, K. Yasukawa, Y. Yanagi, and S.-i. Kawabata (2011)
Science Signaling 4, ra7
   Abstract »    Full Text »    PDF »
Structure-Function Analysis of the Yeast Mitochondrial Rho GTPase, Gem1p: IMPLICATIONS FOR MITOCHONDRIAL INHERITANCE.
T. Koshiba, H. A. Holman, K. Kubara, K. Yasukawa, S.-i. Kawabata, K. Okamoto, J. Macfarlane, and J. M. Shaw (2011)
J. Biol. Chem. 286, 354-362
   Abstract »    Full Text »    PDF »
Mitochondrial shape changes: orchestrating cell pathophysiology.
S. Campello and L. Scorrano (2010)
EMBO Rep. 11, 678-684
   Abstract »    Full Text »    PDF »
Identifying genetic loci and spleen gene coexpression networks underlying immunophenotypes in BXD recombinant inbred mice.
R. M. Lynch, S. Naswa, G. L. Rogers Jr., S. A. Kania, S. Das, E. J. Chesler, A. M. Saxton, M. A. Langston, and B. H. Voy (2010)
Physiol Genomics 41, 244-253
   Abstract »    Full Text »    PDF »
Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway.
C. Castanier, D. Garcin, A. Vazquez, and D. Arnoult (2010)
EMBO Rep. 11, 133-138
   Abstract »    Full Text »    PDF »
How the Noninflammasome NLRs Function in the Innate Immune System.
J. P. Y. Ting, J. A. Duncan, and Y. Lei (2010)
Science 327, 286-290
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882