Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 29 September 2009
Vol. 2, Issue 90, p. re7
[DOI: 10.1126/scisignal.290re7]

REVIEWS

Transduction of Redox Signaling by Electrophile-Protein Reactions

Tanja K. Rudolph1,2 and Bruce A. Freeman1*

1 Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
2 Department of Cardiology, University Heart Center Hamburg, Hamburg, Germany.

Abstract: Over the last 50 years, the posttranslational modification (PTM) of proteins has emerged as a central mechanism for cells to regulate metabolism, growth, differentiation, cell-cell interactions, and immune responses. By influencing protein structure and function, PTM leads to a multiplication of proteome diversity. Redox-dependent PTMs, mediated by environmental and endogenously generated reactive species, induce cell signaling responses and can have toxic effects in organisms. PTMs induced by the electrophilic by-products of redox reactions most frequently occur at protein thiols; other nucleophilic amino acids serve as less favorable targets. Advances in mass spectrometry and affinity-chemistry strategies have improved the detection of electrophile-induced protein modifications both in vitro and in vivo and have revealed a high degree of amino acid and protein selectivity of electrophilic PTM. The identification of biological targets of electrophiles has motivated further study of the functional impact of various PTM reactions on specific signaling pathways and how this might affect organisms.

* Corresponding author. E-mail, freerad{at}pitt.edu

Citation: T. K. Rudolph, B. A. Freeman, Transduction of Redox Signaling by Electrophile-Protein Reactions. Sci. Signal. 2, re7 (2009).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems.
S. G. Codreanu, J. C. Ullery, J. Zhu, K. A. Tallman, W. N. Beavers, N. A. Porter, L. J. Marnett, B. Zhang, and D. C. Liebler (2014)
Mol. Cell. Proteomics 13, 849-859
   Abstract »    Full Text »    PDF »
Omega-3 Fatty Acids Protect the Brain against Ischemic Injury by Activating Nrf2 and Upregulating Heme Oxygenase 1.
M. Zhang, S. Wang, L. Mao, R. K. Leak, Y. Shi, W. Zhang, X. Hu, B. Sun, G. Cao, Y. Gao, et al. (2014)
J. Neurosci. 34, 1903-1915
   Abstract »    Full Text »    PDF »
Molecular Biology of Atherosclerosis.
P. N. Hopkins (2013)
Physiol Rev 93, 1317-1542
   Abstract »    Full Text »    PDF »
Characterization and quantification of endogenous fatty acid nitroalkene metabolites in human urine.
S. R. Salvatore, D. A. Vitturi, P. R. S. Baker, G. Bonacci, J. R. Koenitzer, S. R. Woodcock, B. A. Freeman, and F. J. Schopfer (2013)
J. Lipid Res. 54, 1998-2009
   Abstract »    Full Text »    PDF »
Regulation of redox signalling by an electrophilic cyclic nucleotide.
T. Akaike, M. Nishida, and S. Fujii (2013)
J. Biochem. 153, 131-138
   Abstract »    Full Text »    PDF »
Conjugation of Glutathione to Oxidized Tyrosine Residues in Peptides and Proteins.
P. Nagy, T. P. Lechte, A. B. Das, and C. C. Winterbourn (2012)
J. Biol. Chem. 287, 26068-26076
   Abstract »    Full Text »    PDF »
Structural insights into the redox-switch mechanism of the MarR/DUF24-type regulator HypR.
G. J. Palm, B. Khanh Chi, P. Waack, K. Gronau, D. Becher, D. Albrecht, W. Hinrichs, R. J. Read, and H. Antelmann (2012)
Nucleic Acids Res. 40, 4178-4192
   Abstract »    Full Text »    PDF »
Direct Redox Regulation of F-Actin Assembly and Disassembly by Mical.
R.-J. Hung, C. W. Pak, and J. R. Terman (2011)
Science 334, 1710-1713
   Abstract »    Full Text »    PDF »
Hydrogen peroxide differentially modulates cardiac myocyte nitric oxide synthesis.
J. L. Sartoretto, H. Kalwa, M. D. Pluth, S. J. Lippard, and T. Michel (2011)
PNAS 108, 15792-15797
   Abstract »    Full Text »    PDF »
Electrophilic Fatty Acids Regulate Matrix Metalloproteinase Activity and Expression.
G. Bonacci, F. J. Schopfer, C. I. Batthyany, T. K. Rudolph, V. Rudolph, N. K. H. Khoo, E. E. Kelley, and B. A. Freeman (2011)
J. Biol. Chem. 286, 16074-16081
   Abstract »    Full Text »    PDF »
Electrophilic Nitro-fatty Acids Activate NRF2 by a KEAP1 Cysteine 151-independent Mechanism.
E. Kansanen, G. Bonacci, F. J. Schopfer, S. M. Kuosmanen, K. I. Tong, H. Leinonen, S. R. Woodcock, M. Yamamoto, C. Carlberg, S. Yla-Herttuala, et al. (2011)
J. Biol. Chem. 286, 14019-14027
   Abstract »    Full Text »    PDF »
PECAM-targeted delivery of SOD inhibits endothelial inflammatory response.
V. V. Shuvaev, J. Han, K. J. Yu, S. Huang, B. J. Hawkins, M. Madesh, M. Nakada, and V. R. Muzykantov (2011)
FASEB J 25, 348-357
   Abstract »    Full Text »    PDF »
Nitro-Oleic Acid Inhibits Angiotensin II-Induced Hypertension.
J. Zhang, L. Villacorta, L. Chang, Z. Fan, M. Hamblin, T. Zhu, C. S. Chen, M. P. Cole, F. J. Schopfer, C. X. Deng, et al. (2010)
Circ. Res. 107, 540-548
   Abstract »    Full Text »    PDF »
Nitro-Fatty Acids Reduce Atherosclerosis in Apolipoprotein E-Deficient Mice.
T. K. Rudolph, V. Rudolph, M. M. Edreira, M. P. Cole, G. Bonacci, F. J. Schopfer, S. R. Woodcock, A. Franek, M. Pekarova, N. K. H. Khoo, et al. (2010)
Arterioscler Thromb Vasc Biol 30, 938-945
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882