Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 6 October 2009
Vol. 2, Issue 91, p. ra61
[DOI: 10.1126/scisignal.2000333]

RESEARCH ARTICLES

Coordinated Responses to Oxygen and Sugar Deficiency Allow Rice Seedlings to Tolerate Flooding

Kuo-Wei Lee1,6, Peng-Wen Chen2, Chung-An Lu3, Shu Chen4, Tuan-Hua David Ho5, and Su-May Yu6*

1 Graduate Institute of Life Sciences, National Defense Medical Center, Neihu, Taipei 114, Taiwan, ROC.
2 Institute of Agricultural Biotechnology, National Chiayi University, Chiayi City 600, Taiwan, ROC.
3 Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC.
4 Taiwan Agricultural Research Institute, Wufeng, Taichung 413, Taiwan, ROC.
5 Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC.
6 Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC.

Abstract: Flooding is a widespread natural disaster that leads to oxygen (O2) and energy deficiency in terrestrial plants, thereby reducing their productivity. Rice is unusually tolerant to flooding, but the underlying mechanism for this tolerance has remained elusive. Here, we show that protein kinase CIPK15 [calcineurin B–like (CBL)–interacting protein kinase] plays a key role in O2-deficiency tolerance in rice. CIPK15 regulates the plant global energy and stress sensor SnRK1A (Snf1-related protein kinase 1) and links O2-deficiency signals to the SnRK1-dependent sugar-sensing cascade to regulate sugar and energy production and to enable rice growth under floodwater. Our studies contribute to understanding how rice grows under the conditions of O2 deficiency necessary for growing rice in irrigated lowlands.

* To whom correspondence should be addressed. E-mail: sumay{at}imb.sinica.edu.tw

Citation: K.-W. Lee, P.-W. Chen, C.-A. Lu, S. Chen, T.-H. D. Ho, S.-M. Yu, Coordinated Responses to Oxygen and Sugar Deficiency Allow Rice Seedlings to Tolerate Flooding. Sci. Signal. 2, ra61 (2009).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
SnRK1A-Interacting Negative Regulators Modulate the Nutrient Starvation Signaling Sensor SnRK1 in Source-Sink Communication in Cereal Seedlings under Abiotic Stress.
C.-R. Lin, K.-W. Lee, C.-Y. Chen, Y.-F. Hong, J.-L. Chen, C.-A. Lu, K.-T. Chen, T.-H. D. Ho, and S.-M. Yu (2014)
PLANT CELL 26, 808-827
   Abstract »    Full Text »    PDF »
Stress-Induced Cytokinin Synthesis Increases Drought Tolerance through the Coordinated Regulation of Carbon and Nitrogen Assimilation in Rice.
M. Reguera, Z. Peleg, Y. M. Abdel-Tawab, E. B. Tumimbang, C. A. Delatorre, and E. Blumwald (2013)
Plant Physiology 163, 1609-1622
   Abstract »    Full Text »    PDF »
ABI1 and PP2CA Phosphatases Are Negative Regulators of Snf1-Related Protein Kinase1 Signaling in Arabidopsis.
A. Rodrigues, M. Adamo, P. Crozet, L. Margalha, A. Confraria, C. Martinho, A. Elias, A. Rabissi, V. Lumbreras, M. Gonzalez-Guzman, et al. (2013)
PLANT CELL 25, 3871-3884
   Abstract »    Full Text »    PDF »
How Do Sugars Regulate Plant Growth and Development? New Insight into the Role of Trehalose-6-Phosphate.
L. E. O'Hara, M. J. Paul, and A. Wingler (2013)
Mol Plant 6, 261-274
   Abstract »    Full Text »    PDF »
Waterproofing Crops: Effective Flooding Survival Strategies.
J. Bailey-Serres, S. C. Lee, and E. Brinton (2012)
Plant Physiology 160, 1698-1709
   Full Text »    PDF »
Deciphering Systemic Wound Responses of the Pumpkin Extrafascicular Phloem by Metabolomics and Stable Isotope-Coded Protein Labeling.
F. Gaupels, H. Sarioglu, M. Beckmann, B. Hause, M. Spannagl, J. Draper, C. Lindermayr, and J. Durner (2012)
Plant Physiology 160, 2285-2299
   Abstract »    Full Text »    PDF »
A Comparative Study of Ethylene Growth Response Kinetics in Eudicots and Monocots Reveals a Role for Gibberellin in Growth Inhibition and Recovery.
J. Kim, R. L. Wilson, J. B. Case, and B. M. Binder (2012)
Plant Physiology 160, 1567-1580
   Abstract »    Full Text »    PDF »
Reactive Oxygen Species-Driven Transcription in Arabidopsis under Oxygen Deprivation.
C. Pucciariello, S. Parlanti, V. Banti, G. Novi, and P. Perata (2012)
Plant Physiology 159, 184-196
   Abstract »    Full Text »    PDF »
Regulatory Functions of SnRK1 in Stress-Responsive Gene Expression and in Plant Growth and Development.
Y.-H. Cho, J.-W. Hong, E.-C. Kim, and S.-D. Yoo (2012)
Plant Physiology 158, 1955-1964
   Abstract »    Full Text »    PDF »
Plant Oxygen Sensing Is Mediated by the N-End Rule Pathway: A Milestone in Plant Anaerobiosis.
R. Sasidharan and A. Mustroph (2011)
PLANT CELL 23, 4173-4183
   Abstract »    Full Text »    PDF »
HRE-Type Genes are Regulated by Growth-Related Changes in Internal Oxygen Concentrations During the Normal Development of Potato (Solanum tuberosum) Tubers.
F. Licausi, F. M. Giorgi, E. Schmalzlin, B. Usadel, P. Perata, J. T. van Dongen, and P. Geigenberger (2011)
Plant Cell Physiol. 52, 1957-1972
   Abstract »    Full Text »    PDF »
Reduced expression of a gene encoding a Golgi localized monosaccharide transporter (OsGMST1) confers hypersensitivity to salt in rice (Oryza sativa).
H. Cao, S. Guo, Y. Xu, K. Jiang, A. M. Jones, and K. Chong (2011)
J. Exp. Bot. 62, 4595-4604
   Abstract »    Full Text »    PDF »
EXORDIUM-LIKE1 Promotes Growth during Low Carbon Availability in Arabidopsis.
F. Schroder, J. Lisso, and C. Mussig (2011)
Plant Physiology 156, 1620-1630
   Abstract »    Full Text »    PDF »
Coping with Stresses: Roles of Calcium- and Calcium/Calmodulin-Regulated Gene Expression.
A. S. N. Reddy, G. S. Ali, H. Celesnik, and I. S. Day (2011)
PLANT CELL 23, 2010-2032
   Abstract »    Full Text »    PDF »
Wheat Grain Development Is Characterized by Remarkable Trehalose 6-Phosphate Accumulation Pregrain Filling: Tissue Distribution and Relationship to SNF1-Related Protein Kinase1 Activity.
E. Martinez-Barajas, T. Delatte, H. Schluepmann, G. J. de Jong, G. W. Somsen, C. Nunes, L. F. Primavesi, P. Coello, R. A. C. Mitchell, and M. J. Paul (2011)
Plant Physiology 156, 373-381
   Abstract »    Full Text »    PDF »
Discover and Connect Cellular Signaling.
J. Sheen (2010)
Plant Physiology 154, 562-566
   Full Text »    PDF »
New Regulator for Energy Signaling Pathway in Plants Highlights Conservation Among Species.
A. K. Meyer, C. F. H. Longin, C. Klose, and A. Hermann (2010)
Science Signaling 3, jc5
   Abstract »    Full Text »    PDF »
Calcium Signals: The Lead Currency of Plant Information Processing.
J. Kudla, O. Batistic, and K. Hashimoto (2010)
PLANT CELL 22, 541-563
   Abstract »    Full Text »    PDF »
Cross-Kingdom Comparison of Transcriptomic Adjustments to Low-Oxygen Stress Highlights Conserved and Plant-Specific Responses.
A. Mustroph, S. C. Lee, T. Oosumi, M. E. Zanetti, H. Yang, K. Ma, A. Yaghoubi-Masihi, T. Fukao, and J. Bailey-Serres (2010)
Plant Physiology 152, 1484-1500
   Abstract »    Full Text »    PDF »
The Submergence Tolerance Regulator Sub1A Mediates Stress-Responsive Expression of AP2/ERF Transcription Factors.
K.-H. Jung, Y.-S. Seo, H. Walia, P. Cao, T. Fukao, P. E. Canlas, F. Amonpant, J. Bailey-Serres, and P. C. Ronald (2010)
Plant Physiology 152, 1674-1692
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882