Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. STKE, 4 December 2001
Vol. 2001, Issue 111, p. re19
[DOI: 10.1126/stke.2001.111.re19]

REVIEWS

The Complex and Intriguing Lives of PIP2 with Ion Channels and Transporters

Donald W. Hilgemann*, Siyi Feng, and Cem Nasuhoglu

Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9040 USA.

Abstract: Phosphatidylinositol-4,5-bisphosphate (PIP2), the precursor of several signaling molecules in eukayotic cells, is itself also used by cells to signal to membrane-associated proteins. PIP2 anchors numerous signaling molecules and cytoskeleton at the cell membrane, and the metabolism of PIP2 is closely connected to membrane trafficking. Recently, ion transporters and channels have been discovered to be regulated by PIP2. Systems reported to be activated by PIP2 include (i) plasmalemmal calcium pumps (PMCA), (ii) cardiac sodium-calcium exchangers (NCX1), (iii) sodium-proton exchangers (NHE1-4), (iv) a sodium-magnesium exchanger of unknown identity, (v) all inward rectifier potassium channels (KATP, IRK, GIRK, and ROMK channels), (vi) epithelial sodium channels (ENaC), and (vii) ryanodine-sensitive calcium release channels (RyR). Systems reported to be inhibited by PIP2 include (i) cyclic nucleotide-gated channels of the rod (CNG), (ii) transient receptor potential-like (TRPL) Drosophila phototransduction channels, (iii) capsaicin-activated transient receptor potential (TRP) channels (VR1), and (iv) IP3-gated calcium release channels (IP3R). Systems that appear to be completely insensitive to PIP2 include (i) voltage-gated sodium channels, (ii) most voltage-gated potassium channels, (iii) sodium-potassium pumps, (iv) several neurotransmitter transporters, and (v) cystic fibrosis transmembrane receptor (CFTR)-type chloride channels. Presumably, local changes of the concentration of PIP2 in the plasma membrane represent cell signals to those mechanisms sensitive to PIP2 changes. Unfortunately, our understanding of how local PIP2 concentrations are regulated remains very limited. One important complexity is the probable existence of phospholipid microdomains, or lipid rafts. Such domains may serve to localize PIP2 and thereby PIP2 signaling, as well as to organize PIP2 binding partners into signaling complexes. A related biological role of PIP2 may be to control the activity of ion transporters and channels during biosynthesis or vesicle trafficking. Low PIP2 concentrations in the secretory pathway would inactivate all of the systems that are stimulated by PIP2. How, in detail, is PIP2 used by cells to control ion channel and transporter activities? Further progress requires an improved understanding of lipid kinases and phosphatases, how they are regulated, where they are localized in cells, and with which ion channels and transporters they might localize.

*Corresponding author, Telephone: 214-648-6728, fax: 214-648-8879, e-mail: hilgeman{at}utsw.swmed.edu

Citation: D. W. Hilgemann, S. Feng, C. Nasuhoglu, The Complex and Intriguing Lives of PIP2 with Ion Channels and Transporters. Sci. STKE 2001, re19 (2001).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Phosphatidylinositol 4,5-Biphosphate (PIP2) Modulates Interaction of Syntaxin-1A with Sulfonylurea Receptor 1 to Regulate Pancreatic {beta}-Cell ATP-sensitive Potassium Channels.
T. Liang, L. Xie, C. Chao, Y. Kang, X. Lin, T. Qin, H. Xie, Z.-P. Feng, and H. Y. Gaisano (2014)
J. Biol. Chem. 289, 6028-6040
   Abstract »    Full Text »    PDF »
Amphetamine actions at the serotonin transporter rely on the availability of phosphatidylinositol-4,5-bisphosphate.
F. Buchmayer, K. Schicker, T. Steinkellner, P. Geier, G. Stubiger, P. J. Hamilton, A. Jurik, T. Stockner, J.-W. Yang, T. Montgomery, et al. (2013)
PNAS 110, 11642-11647
   Abstract »    Full Text »    PDF »
Localization of Phosphatidylinositol 4,5-Bisphosphate to Lipid Rafts and Uroids in the Human Protozoan Parasite Entamoeba histolytica.
A. B. Koushik, R. R. Powell, and L. A. Temesvari (2013)
Infect. Immun. 81, 2145-2155
   Abstract »    Full Text »    PDF »
Phosphoinositides alter lipid bilayer properties.
R. Rusinova, E. A. Hobart, R. E. Koeppe II, and O. S. Andersen (2013)
J. Gen. Physiol. 141, 673-690
   Abstract »    Full Text »    PDF »
Ambient Temperature Affects the Temperature Threshold for TRPM8 Activation through Interaction of Phosphatidylinositol 4,5-Bisphosphate.
F. Fujita, K. Uchida, M. Takaishi, T. Sokabe, and M. Tominaga (2013)
J. Neurosci. 33, 6154-6159
   Abstract »    Full Text »    PDF »
The where and how of PIP regulation of cone photoreceptor CNG channels.
L. Zhou and D. E. Logothetis (2013)
J. Gen. Physiol. 141, 403-407
   Full Text »    PDF »
Depletion of PtdIns(4,5)P2 underlies retinal degeneration in Drosophila trp mutants.
S. Sengupta, T. R. Barber, H. Xia, D. F. Ready, and R. C. Hardie (2013)
J. Cell Sci. 126, 1247-1259
   Abstract »    Full Text »    PDF »
Interplay between Calmodulin and Phosphatidylinositol 4,5-Bisphosphate in Ca2+-induced Inactivation of Transient Receptor Potential Vanilloid 6 Channels.
C. Cao, E. Zakharian, I. Borbiro, and T. Rohacs (2013)
J. Biol. Chem. 288, 5278-5290
   Abstract »    Full Text »    PDF »
Distant Cytosolic Residues Mediate a Two-way Molecular Switch That Controls the Modulation of Inwardly Rectifying Potassium (Kir) Channels by Cholesterol and Phosphatidylinositol 4,5-Bisphosphate (PI(4,5)P2).
A. Rosenhouse-Dantsker, S. Noskov, H. Han, S. K. Adney, Q.-Y. Tang, A. A. Rodriguez-Menchaca, G. B. Kowalsky, V. I. Petrou, C. V. Osborn, D. E. Logothetis, et al. (2012)
J. Biol. Chem. 287, 40266-40278
   Abstract »    Full Text »    PDF »
Dual Effect of Phosphatidyl (4,5)-Bisphosphate PIP2 on Shaker K+ Channels.
F. Abderemane-Ali, Z. Es-Salah-Lamoureux, L. Delemotte, M. A. Kasimova, A. J. Labro, D. J. Snyders, D. Fedida, M. Tarek, I. Baro, and G. Loussouarn (2012)
J. Biol. Chem. 287, 36158-36167
   Abstract »    Full Text »    PDF »
PIP2 controls voltage-sensor movement and pore opening of Kv channels through the S4-S5 linker.
A. A. Rodriguez-Menchaca, S. K. Adney, Q.-Y. Tang, X.-Y. Meng, A. Rosenhouse-Dantsker, M. Cui, and D. E. Logothetis (2012)
PNAS 109, E2399-E2408
   Abstract »    Full Text »    PDF »
Fitting KV potassium channels into the PIP2 puzzle: Hille group connects dots between illustrious HH groups.
D. W. Hilgemann (2012)
J. Gen. Physiol. 140, 245-248
   Full Text »    PDF »
PI4P and PI(4,5)P2 Are Essential But Independent Lipid Determinants of Membrane Identity.
G. R. V. Hammond, M. J. Fischer, K. E. Anderson, J. Holdich, A. Koteci, T. Balla, and R. F. Irvine (2012)
Science 337, 727-730
   Abstract »    Full Text »    PDF »
Regulation of voltage-gated potassium channels by PI(4,5)P2.
M. Kruse, G. R. V. Hammond, and B. Hille (2012)
J. Gen. Physiol. 140, 189-205
   Abstract »    Full Text »    PDF »
Phosphoinositide isoforms determine compartment-specific ion channel activity.
X. Zhang, X. Li, and H. Xu (2012)
PNAS 109, 11384-11389
   Abstract »    Full Text »    PDF »
Distinct subunit contributions to the activation of M-type potassium channels by PI(4,5)P2.
V. Telezhkin, D. A. Brown, and A. J. Gibb (2012)
J. Gen. Physiol. 140, 41-53
   Abstract »    Full Text »    PDF »
Membrane Depolarization Increases Membrane PtdIns(4,5)P2 Levels through Mechanisms Involving PKC {beta}II and PI4 Kinase.
X. Chen, X. Zhang, C. Jia, J. Xu, H. Gao, G. Zhang, X. Du, and H. Zhang (2011)
J. Biol. Chem. 286, 39760-39767
   Abstract »    Full Text »    PDF »
Hadp1, a newly identified pleckstrin homology domain protein, is required for cardiac contractility in zebrafish.
J. D. Wythe, M. J. Jurynec, L. D. Urness, C. A. Jones, M. K. Sabeh, A. A. Werdich, M. Sato, H. J. Yost, D. J. Grunwald, C. A. MacRae, et al. (2011)
Dis. Model. Mech. 4, 607-621
   Abstract »    Full Text »    PDF »
N-terminal transmembrane domain of SUR1 controls gating of Kir6.2 by modulating channel sensitivity to PIP2.
E. B. Pratt, P. Tewson, C. E. Bruederle, W. R. Skach, and S.-L. Shyng (2011)
J. Gen. Physiol. 137, 299-314
   Abstract »    Full Text »    PDF »
Gating of Transient Receptor Potential Melastatin 8 (TRPM8) Channels Activated by Cold and Chemical Agonists in Planar Lipid Bilayers.
E. Zakharian, C. Cao, and T. Rohacs (2010)
J. Neurosci. 30, 12526-12534
   Abstract »    Full Text »    PDF »
Phosphoinositides: lipid regulators of membrane proteins.
B. H. Falkenburger, J. B. Jensen, E. J. Dickson, B.-C. Suh, and B. Hille (2010)
J. Physiol. 588, 3179-3185
   Abstract »    Full Text »    PDF »
Histaminergic responses by hypothalamic neurons that regulate lordosis and their modulation by estradiol.
C. Dupre, M. Lovett-Barron, D. W. Pfaff, and L.-M. Kow (2010)
PNAS 107, 12311-12316
   Abstract »    Full Text »    PDF »
Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling.
Z. Szentpetery, P. Varnai, and T. Balla (2010)
PNAS 107, 8225-8230
   Abstract »    Full Text »    PDF »
Cholesterol Inhibits M-type K+ Channels via Protein Kinase C-dependent Phosphorylation in Sympathetic Neurons.
S.-Y. Lee, H.-K. Choi, S.-T. Kim, S. Chung, M. K. Park, J.-H. Cho, W.-K. Ho, and H. Cho (2010)
J. Biol. Chem. 285, 10939-10950
   Abstract »    Full Text »    PDF »
Depolarization Increases Phosphatidylinositol (PI) 4,5-Bisphosphate Level and KCNQ Currents through PI 4-Kinase Mechanisms.
X. Zhang, X. Chen, C. Jia, X. Geng, X. Du, and H. Zhang (2010)
J. Biol. Chem. 285, 9402-9409
   Abstract »    Full Text »    PDF »
P2Y4-Mediated Regulation of Na+ Absorption in the Reissner's Membrane of the Cochlea.
C.-H. Kim, H.-Y. Kim, H. S. Lee, S. O. Chang, S.-H. Oh, and J. H. Lee (2010)
J. Neurosci. 30, 3762-3769
   Abstract »    Full Text »    PDF »
Putting G protein-coupled receptor-mediated activation of phospholipase C in the limelight.
T. Balla (2010)
J. Gen. Physiol. 135, 77-80
   Full Text »    PDF »
Kinetics of PIP2 metabolism and KCNQ2/3 channel regulation studied with a voltage-sensitive phosphatase in living cells.
B. H. Falkenburger, J. B. Jensen, and B. Hille (2010)
J. Gen. Physiol. 135, 99-114
   Abstract »    Full Text »    PDF »
Affinity for phosphatidylinositol 4,5-bisphosphate determines muscarinic agonist sensitivity of Kv7 K+ channels.
C. C. Hernandez, B. Falkenburger, and M. S. Shapiro (2009)
J. Gen. Physiol. 134, 437-448
   Abstract »    Full Text »    PDF »
Alchemy in the Soup: Transforming Metabolic Signals to Excitability.
C. G. Nichols (2007)
Sci. STKE 2007, pe59
   Abstract »    Full Text »    PDF »
Rapid Chemically Induced Changes of PtdIns(4,5)P2 Gate KCNQ Ion Channels.
B.-C. Suh, T. Inoue, T. Meyer, and B. Hille (2006)
Science 314, 1454-1457
   Abstract »    Full Text »    PDF »
Inhibition of a background potassium channel by Gq protein {alpha}-subunits.
X. Chen, E. M. Talley, N. Patel, A. Gomis, W. E. McIntire, B. Dong, F. Viana, J. C. Garrison, and D. A. Bayliss (2006)
PNAS 103, 3422-3427
   Abstract »    Full Text »    PDF »
BIOCHEMISTRY: Oily Barbarians Breach Ion Channel Gates.
D. W. Hilgemann (2004)
Science 304, 223-224
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882