Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Sci. STKE, 30 January 2001
Vol. 2001, Issue 67, p. tw7
[DOI: 10.1126/stke.2001.67.tw7]


Virology Chromatin Structure Contributes to Latency

Understanding viral latency and reactivation is an important aspect of viral biology and may aid development of strategies to control viral infection. Meier developed a clonal NTera2/D1 (NT2) cell line, which is derived from an embryonal teratocarcinoma and which can be induced to differentiate into neurons in culture. These cells were used to study latency and reactivation of human cytomegalovirus, a virus that replicates in neurons. Based on analysis of the viral DNA structure in infected, but latent, cells, Meier showed that at least a portion of the viral genome had reached the nucleus. Viral replication could be stimulated by pretreatment of the cells with retinoic acid to stimulate differentiation, but retinoic acid had no effect if applied after infection. The histone deacetylase inhibitor trichostatin A stimulated expression of viral major immediate early genes, viral replication, and the production of infectious virus undifferentiated NT2 cells. Thus, differences in chromatin structure in differentiated and undifferentiated cells represents one mechanism by which the immediate early gene transcription can be inhibited, thus inhibiting viral replication and promoting latency.

J. L. Meier, Reactivation of the human cytomegalovirus major immediate-early regulatory region and viral replication in embryonal Ntera2 cells: Role of trichostatin A, retinoic acid, and deletion of the 21-base-pair repeats and modulator. J. Virol. 75, 1581-1593 (2001). [Abstract] [Full Text]

Citation: Chromatin Structure Contributes to Latency. Sci. STKE 2001, tw7 (2001).

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882