Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Sci. STKE, 17 April 2001
Vol. 2001, Issue 78, p. tw7
[DOI: 10.1126/stke.2001.78.tw7]


Cell Cycle How Ionizing Radiation Stops S Phase

Falck et al. have made progress in defining the molecular mechanism underlying the S-phase checkpoint activated by ionizing radiation (IR). IR caused rapid, transient degradation of the phosphatase Cdc25A (which dephosphorylates and activates cyclin-dependent kinase 2) in mammalian cells by a mechanism dependent on the catalytic activity and the ability of the kinase Chk2 to interact with and phosphorylate Cdc25A. Furthermore, the degradation of Cdc25A in response to IR occurred in cells with normal and mutated versions of the tumor suppressor p53, confirming the independence of this S-phase checkpoint on the p53 pathway. However, in cells from patients with ataxia telangiectasia with mutations in the ATM gene, Cdc25A persisted after IR, and the cells exhibited radioresistant DNA synthesis. Thus, IR appears to activate a pathway from ATM to Chk2, which then phosphorylates Cdc25A leading to its destruction and a transient block in the progress of the S phase of the cell cycle.

J. Falck, N. Mailand, R. G. Syljuasen, J. Bartek, J. Lukas, The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842-847 (2001). [Online Journal]

Citation: How Ionizing Radiation Stops S Phase. Sci. STKE 2001, tw7 (2001).

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882