Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. STKE, 12 June 2001
Vol. 2001, Issue 86, p. pl1
[DOI: 10.1126/stke.2001.86.pl1]

PROTOCOLS

The Biotin Switch Method for the Detection of S-Nitrosylated Proteins

Samie R. Jaffrey and Solomon H. Snyder

The authors are in the Departments of Neuroscience, Pharmacology and Molecular Sciences, and Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. E-mail: jaffrey{at}jhmi.edu; ssnyder{at}jhmi.edu

Abstract: Many of the effects of nitric oxide are mediated by the direct modification of cysteine residues resulting in an adduct called a nitrosothiol. Here, we describe a novel method for detecting proteins that contain nitrosothiols. In this three-step procedure, nitrosylated cysteines are converted to biotinylated cysteines. Biotinylated proteins can then be detected by immunoblotting or can be purified by avidin-affinity chromatography. We include examples of the detection of S-nitrosylated proteins in brain lysates after in vitro S-nitrosylation, as well as the detection of endogenous S-nitrosothiols in selected neuronal proteins.

Citation: S. R. Jaffrey, S. H. Snyder, The Biotin Switch Method for the Detection of S-Nitrosylated Proteins. Sci. STKE 2001, pl1 (2001).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
S-nitrosylation of ARH is required for LDL uptake by the LDL receptor.
Z. Zhao, S. Pompey, H. Dong, J. Weng, R. Garuti, and P. Michaely (2013)
J. Lipid Res. 54, 1550-1559
   Abstract »    Full Text »    PDF »
Triple Cysteine Module within M-Type K+ Channels Mediates Reciprocal Channel Modulation by Nitric Oxide and Reactive Oxygen Species.
L. Ooi, S. Gigout, L. Pettinger, and N. Gamper (2013)
J. Neurosci. 33, 6041-6046
   Abstract »    Full Text »    PDF »
Targeted Disruption of Inducible Nitric Oxide Synthase Protects Against Aging, S-Nitrosation, and Insulin Resistance in Muscle of Male Mice.
E. R. Ropelle, J. R. Pauli, D. E. Cintra, A. S. da Silva, C. T. De Souza, D. Guadagnini, B. M. Carvalho, A. M. Caricilli, C. K. Katashima, M. A. Carvalho-Filho, et al. (2013)
Diabetes 62, 466-470
   Abstract »    Full Text »    PDF »
Cysteine Oxidative Posttranslational Modifications: Emerging Regulation in the Cardiovascular System.
H. S. Chung, S.-B. Wang, V. Venkatraman, C. I. Murray, and J. E. Van Eyk (2013)
Circ. Res. 112, 382-392
   Abstract »    Full Text »    PDF »
Cutting Edge: Nitric Oxide Inhibits the NLRP3 Inflammasome.
E. Hernandez-Cuellar, K. Tsuchiya, H. Hara, R. Fang, S. Sakai, I. Kawamura, S. Akira, and M. Mitsuyama (2012)
J. Immunol. 189, 5113-5117
   Abstract »    Full Text »    PDF »
S-Nitrosylation Inhibits Pannexin 1 Channel Function.
A. W. Lohman, J. L. Weaver, M. Billaud, J. K. Sandilos, R. Griffiths, A. C. Straub, S. Penuela, N. Leitinger, D. W. Laird, D. A. Bayliss, et al. (2012)
J. Biol. Chem. 287, 39602-39612
   Abstract »    Full Text »    PDF »
Chasing Cysteine Oxidative Modifications: Proteomic Tools for Characterizing Cysteine Redox Status.
C. I. Murray and J. E. Van Eyk (2012)
Circ Cardiovasc Genet 5, 591
   Full Text »    PDF »
Nitroxyl-Mediated Disulfide Bond Formation Between Cardiac Myofilament Cysteines Enhances Contractile Function.
W. D. Gao, C. I. Murray, Y. Tian, X. Zhong, J. F. DuMond, X. Shen, B. A. Stanley, D. B. Foster, D. A. Wink, S. B. King, et al. (2012)
Circ. Res. 111, 1002-1011
   Abstract »    Full Text »    PDF »
S-Nitrosylation of EGFR and Src Activates an Oncogenic Signaling Network in Human Basal-Like Breast Cancer.
C. H. Switzer, S. A. Glynn, R. Y.- S. Cheng, L. A. Ridnour, J. E. Green, S. Ambs, and D. A. Wink (2012)
Mol. Cancer Res. 10, 1203-1215
   Abstract »    Full Text »    PDF »
Inducible NOS-induced chloride intracellular channel 4 (CLIC4) nuclear translocation regulates macrophage deactivation.
M. Malik, K. Jividen, V. C. Padmakumar, C. Cataisson, L. Li, J. Lee, O. M. Z. Howard, and S. H. Yuspa (2012)
PNAS 109, 6130-6135
   Abstract »    Full Text »    PDF »
Cardioprotection Through S-Nitros(yl)ation of Macrophage Migration Inhibitory Factor.
P. Luedike, U. B. Hendgen-Cotta, J. Sobierajski, M. Totzeck, M. Reeh, M. Dewor, H. Lue, C. Krisp, D. Wolters, M. Kelm, et al. (2012)
Circulation 125, 1880-1889
   Abstract »    Full Text »    PDF »
Uterine Smooth Muscle S-Nitrosylproteome in Pregnancy.
C. Ulrich, D. R. Quillici, K. Schegg, R. Woolsey, A. Nordmeier, and I. L. O. Buxton (2012)
Mol. Pharmacol. 81, 143-153
   Abstract »    Full Text »    PDF »
Nitric Oxide and Protein S-Nitrosylation Are Integral to Hydrogen Peroxide-Induced Leaf Cell Death in Rice.
A. Lin, Y. Wang, J. Tang, P. Xue, C. Li, L. Liu, B. Hu, F. Yang, G. J. Loake, and C. Chu (2012)
Plant Physiology 158, 451-464
   Abstract »    Full Text »    PDF »
Site-specific and redox-controlled S-nitrosation of thioredoxin.
K. T. Barglow, C. G. Knutson, J. S. Wishnok, S. R. Tannenbaum, and M. A. Marletta (2011)
PNAS 108, E600-E606
   Abstract »    Full Text »    PDF »
SNO-ing at the Nociceptive Synapse?.
I. Tegeder, R. Scheving, I. Wittig, and G. Geisslinger (2011)
Pharmacol. Rev. 63, 366-389
   Abstract »    Full Text »    PDF »
Caveolin-1-eNOS signaling promotes p190RhoGAP-A nitration and endothelial permeability.
M. R. Siddiqui, Y. A. Komarova, S. M. Vogel, X. Gao, M. G. Bonini, J. Rajasingh, Y.-Y. Zhao, V. Brovkovych, and A. B. Malik (2011)
J. Cell Biol. 193, 841-850
   Abstract »    Full Text »    PDF »
Nitric oxide is the primary mediator of cytotoxicity induced by GSH depletion in neuronal cells.
K. Aquilano, S. Baldelli, S. Cardaci, G. Rotilio, and M. R. Ciriolo (2011)
J. Cell Sci. 124, 1043-1054
   Abstract »    Full Text »    PDF »
What can we learn about cardioprotection from the cardiac mitochondrial proteome?.
M. Gucek and E. Murphy (2010)
Cardiovasc Res 88, 211-218
   Abstract »    Full Text »    PDF »
GAPDH regulates cellular heme insertion into inducible nitric oxide synthase.
R. Chakravarti, K. S. Aulak, P. L. Fox, and D. J. Stuehr (2010)
PNAS 107, 18004-18009
   Abstract »    Full Text »    PDF »
Redox Regulatory Mechanism of Transnitrosylation by Thioredoxin.
C. Wu, T. Liu, W. Chen, S.-i. Oka, C. Fu, M. R. Jain, A. M. Parrott, A. T. Baykal, J. Sadoshima, and H. Li (2010)
Mol. Cell. Proteomics 9, 2262-2275
   Abstract »    Full Text »    PDF »
Targeted Quantitation of Site-Specific Cysteine Oxidation in Endogenous Proteins Using a Differential Alkylation and Multiple Reaction Monitoring Mass Spectrometry Approach.
J. M. Held, S. R. Danielson, J. B. Behring, C. Atsriku, D. J. Britton, R. L. Puckett, B. Schilling, J. Campisi, C. C. Benz, and B. W. Gibson (2010)
Mol. Cell. Proteomics 9, 1400-1410
   Abstract »    Full Text »    PDF »
H2S Signals Through Protein S-Sulfhydration.
A. K. Mustafa, M. M. Gadalla, N. Sen, S. Kim, W. Mu, S. K. Gazi, R. K. Barrow, G. Yang, R. Wang, and S. H. Snyder (2009)
Science Signaling 2, ra72
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882