Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. STKE, 10 July 2001
Vol. 2001, Issue 90, p. re1
[DOI: 10.1126/stke.2001.90.re1]


Physiology, Phylogeny, and Functions of the TRP Superfamily of Cation Channels

Craig Montell

The author is in the Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA. E-mail:

Abstract: The transient receptor potential (TRP) protein superfamily consists of a diverse group of Ca2+ permeable nonselective cation channels that bear structural similarities to Drosophila TRP. TRP-related proteins play important roles in nonexcitable cells, as demonstrated by the recent finding that a mammalian TRPC protein is expressed in endothelial cells and functions in vasorelaxation. However, an emerging theme is that many TRP-related proteins are expressed predominantly in the nervous system and function in sensory physiology. The TRP superfamily can be divided into six subfamilies, the first of which is composed of the "classical TRPs" (TRPC subfamily). These proteins all share the common features of three to four ankryin repeats, ≥30% amino acid homology over ≥750 amino acids, and a gating mechanism that operates through phospholipase C. Some classical TRPs may be store-operated channels (SOCs), which are activated by release of Ca2+ from internal stores. The mammalian TRPC proteins are also expressed in the central nervous system, and several are highly enriched in the brain. One TRPC protein has been implicated in the pheromone response. The archetypal TRP, Drosophila TRP, is predominantly expressed in the visual system and is required for phototransduction. Many members of a second subfamily (TRPV) function in sensory physiology. These include VR1 and OSM-9, which respond to heat, osmolarity, odorants, and mechanical stimuli. A third subfamily, TRPN, includes proteins with many ankyrin repeats, one of which, NOMPC, participates in mechanotransduction. Among the members of a fourth subfamily, TRPM, is a putative tumor suppressor termed melastatin, and a bifunctional protein, TRP-PLIK, consisting of a TRPM channel fused to a protein kinase. PKD2 and mucolipidin are the founding members of the TRPP and TRPML subfamilies, respectively. Mutations in PKD2 are responsible for polycystic kidney disease, and mutations in mucolipidin result in a severe neurodegenerative disorder. Recent studies suggest that alterations in the activities of SOC and TRP channels may be at the heart of several additional neurodegenerative diseases. Thus, TRP channels may prove to be important new targets for drug discovery.

Citation: C. Montell, Physiology, Phylogeny, and Functions of the TRP Superfamily of Cation Channels. Sci. STKE 2001, re1 (2001).

Read the Full Text

Calcium and phosphorus metabolism in broilers: Effect of homeostatic mechanism on calcium and phosphorus digestibility1.
M. Proszkowiec-Weglarz and R. Angel (2013)
J Appl Poult Res 22, 609-627
   Abstract »    Full Text »    PDF »
Identification of a Tetrameric Assembly Domain in the C Terminus of Heat-activated TRPV1 Channels.
F. Zhang, S. Liu, F. Yang, J. Zheng, and K. Wang (2011)
J. Biol. Chem. 286, 15308-15316
   Abstract »    Full Text »    PDF »
Voltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis.
J. F. Doerner, H. Hatt, and I. S. Ramsey (2011)
J. Gen. Physiol. 137, 271-288
   Abstract »    Full Text »    PDF »
TRIP Database: a manually curated database of protein-protein interactions for mammalian TRP channels.
Y.-C. Shin, S.-Y. Shin, I. So, D. Kwon, and J.-H. Jeon (2011)
Nucleic Acids Res. 39, D356-D361
   Abstract »    Full Text »    PDF »
TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade.
C. Koike, T. Obara, Y. Uriu, T. Numata, R. Sanuki, K. Miyata, T. Koyasu, S. Ueno, K. Funabiki, A. Tani, et al. (2010)
PNAS 107, 332-337
   Abstract »    Full Text »    PDF »
Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum.
V. A. Golovina (2005)
J. Physiol. 564, 737-749
   Abstract »    Full Text »    PDF »
Erythropoietin-modulated calcium influx through TRPC2 is mediated by phospholipase C{gamma} and IP3R.
Q. Tong, X. Chu, J. Y. Cheung, K. Conrad, R. Stahl, D. L. Barber, G. Mignery, and B. A. Miller (2004)
Am J Physiol Cell Physiol 287, C1667-C1678
   Abstract »    Full Text »    PDF »
Cellular Domains That Contribute to Ca2+ Entry Events.
I. S. Ambudkar (2004)
Sci. STKE 2004, pe32
   Abstract »    Full Text »    PDF »
Toward a Consensus on the Operation of Receptor-Induced Calcium Entry Signals.
D. L. Gill and R. L. Patterson (2004)
Sci. STKE 2004, pe39
   Abstract »    Full Text »    PDF »
CaT1 knock-down strategies fail to affect CRAC channels in mucosal-type mast cells.
H. Kahr, R. Schindl, R. Fritsch, B. Heinze, M. Hofbauer, M. E. Hack, M. A. Mortelmaier, K. Groschner, J.-B. Peng, H. Takanaga, et al. (2004)
J. Physiol. 557, 121-132
   Abstract »    Full Text »    PDF »
Insights into the molecular nature of magnesium homeostasis.
M. Konrad, K. P. Schlingmann, and T. Gudermann (2004)
Am J Physiol Renal Physiol 286, F599-F605
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882