Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Sci. STKE, 16 July 2002
Vol. 2002, Issue 141, p. tw254
[DOI: 10.1126/stke.2002.141.tw254]


Necrosis Last Gasps for Cells

Without oxygen, cells in the brain and the heart die, but they do so by an ill-defined mechanism distinct from the well-studied apoptosis (programmed cell death). In this so-called necrotic cell death, DNA damage activates the enzyme poly(ADP-ribose) polymerase-1 (PARP-1). Yu et al. (see the Perspective by Chiarugi and Moskowitz) show that in an unexpected parallel to apoptosis, PARP-1 causes translocation of AIF (apoptosis inducing factor) to the nucleus, where it launches the cell on its death spiral by causing chromatin fragmentation. In true apoptosis, the key step is AIF translocation to the mitochondria, where it initiates the release of cytochrome c that in turn activates destructive proteases called caspases. Similar AIF action in mitochondria also occurs in necrosis, but it is a later, nonessential step.

S.-W. Yu, H. Wang, M. F. Poitras, C. Coombs, W. J. Bowers, H. J. Federoff, G. G. Poirier, T. M. Dawson, V. L. Dawson, Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297, 259-263 (2002). [Abstract] [Full Text]

A. Chiarugi, M. A. Moskowitz, PARP-1--a perpetrator of apoptotic cell death? Science 297, 200-201 (2002). [Abstract] [Full Text]

Citation: Last Gasps for Cells. Sci. STKE 2002, tw254 (2002).

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882