Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. STKE, 9 December 2003
Vol. 2003, Issue 212, p. re15
[DOI: 10.1126/stke.2122003re15]

REVIEWS

TOR Signaling

Thurl E. Harris and John C. Lawrence Jr.*

Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.

Abstract: The mammalian target of rapamycin, mTOR, is a protein Ser-Thr kinase that functions as a central element in a signaling pathway involved in the control of cell growth and proliferation. The activity of mTOR is controlled not only by amino acids, but also by hormones and growth factors that activate the protein kinase Akt. The signaling pathway downstream of Akt leading to mTOR involves the protein products of the genes mutated in tuberous sclerosis, TSC1 and TSC2, and the small guanosine triphosphatase, Rheb. In cells, mTOR is found in a complex with two other proteins, raptor and mLST8. In this review, we describe recent progress in understanding the control of the mTOR signaling pathway and the role of mTOR-interacting proteins.

*Corresponding author. Telephone: 434-924-1584; fax, 434-982-3575; e-mail, jcl3p{at}virginia.edu

Citation: T. E. Harris, J. C. Lawrence, Jr., TOR Signaling. Sci. STKE 2003, re15 (2003).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Association of Maternal mRNA and Phosphorylated EIF4EBP1 Variants With the Spindle in Mouse Oocytes: Localized Translational Control Supporting Female Meiosis in Mammals.
E. J. Romasko, D. Amarnath, U. Midic, and K. E. Latham (2013)
Genetics 195, 349-358
   Abstract »    Full Text »    PDF »
Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state.
S. E. Babbitt, L. Altenhofen, S. A. Cobbold, E. S. Istvan, C. Fennell, C. Doerig, M. Llinas, and D. E. Goldberg (2012)
PNAS 109, E3278-E3287
   Abstract »    Full Text »    PDF »
Folate-Conjugated Rapamycin Slows Progression of Polycystic Kidney Disease.
J. M. Shillingford, C. P. Leamon, I. R. Vlahov, and T. Weimbs (2012)
J. Am. Soc. Nephrol. 23, 1674-1681
   Abstract »    Full Text »    PDF »
Mammalian Target of Rapamycin Complex 1 (mTORC1) and 2 (mTORC2) Control the Dendritic Arbor Morphology of Hippocampal Neurons.
M. Urbanska, A. Gozdz, L. J. Swiech, and J. Jaworski (2012)
J. Biol. Chem. 287, 30240-30256
   Abstract »    Full Text »    PDF »
Altered Glucose Homeostasis in Mice with Liver-specific Deletion of Src Homology Phosphatase 2.
K. Matsuo, M. Delibegovic, I. Matsuo, N. Nagata, S. Liu, A. Bettaieb, Y. Xi, K. Araki, W. Yang, B. B. Kahn, et al. (2010)
J. Biol. Chem. 285, 39750-39758
   Abstract »    Full Text »    PDF »
Decreased IRS Signaling Impairs {beta}-Cell Cycle Progression and Survival in Transgenic Mice Overexpressing S6K in {beta}-Cells.
L. Elghazi, N. Balcazar, M. Blandino-Rosano, C. Cras-Meneur, S. Fatrai, A. P. Gould, M. M. Chi, K. H. Moley, and E. Bernal-Mizrachi (2010)
Diabetes 59, 2390-2399
   Abstract »    Full Text »    PDF »
Rictor Phosphorylation on the Thr-1135 Site Does Not Require Mammalian Target of Rapamycin Complex 2.
D. Boulbes, C.-H. Chen, T. Shaikenov, N. K. Agarwal, T. R. Peterson, T. A. Addona, H. Keshishian, S. A. Carr, M. A. Magnuson, D. M. Sabatini, et al. (2010)
Mol. Cancer Res. 8, 896-906
   Abstract »    Full Text »    PDF »
The Late Endosome is Essential for mTORC1 Signaling.
R. J. Flinn, Y. Yan, S. Goswami, P. J. Parker, and J. M. Backer (2010)
Mol. Biol. Cell 21, 833-841
   Abstract »    Full Text »    PDF »
Oscillatory Flow-induced Proliferation of Osteoblast-like Cells Is Mediated by {alpha}v{beta}3 and {beta}1 Integrins through Synergistic Interactions of Focal Adhesion Kinase and Shc with Phosphatidylinositol 3-Kinase and the Akt/mTOR/p70S6K Pathway.
D.-Y. Lee, Y.-S. J. Li, S.-F. Chang, J. Zhou, H.-M. Ho, J.-J. Chiu, and S. Chien (2010)
J. Biol. Chem. 285, 30-42
   Abstract »    Full Text »    PDF »
Anergic T Cells Are Metabolically Anergic.
Y. Zheng, G. M. Delgoffe, C. F. Meyer, W. Chan, and J. D. Powell (2009)
J. Immunol. 183, 6095-6101
   Abstract »    Full Text »    PDF »
Glycolytic Flux Signals to mTOR through Glyceraldehyde-3-Phosphate Dehydrogenase-Mediated Regulation of Rheb.
M. N. Lee, S. H. Ha, J. Kim, A. Koh, C. S. Lee, J. H. Kim, H. Jeon, D.-H. Kim, P.-G. Suh, and S. H. Ryu (2009)
Mol. Cell. Biol. 29, 3991-4001
   Abstract »    Full Text »    PDF »
Inhibition of the Mammalian Target of Rapamycin Signaling Pathway Suppresses Dentate Granule Cell Axon Sprouting in a Rodent Model of Temporal Lobe Epilepsy.
P. S. Buckmaster, E. A. Ingram, and X. Wen (2009)
J. Neurosci. 29, 8259-8269
   Abstract »    Full Text »    PDF »
Antagonism of the mammalian target of rapamycin selectively mediates metabolic effects of epidermal growth factor receptor inhibition and protects human malignant glioma cells from hypoxia-induced cell death.
M. W. Ronellenfitsch, D. P. Brucker, M. C. Burger, S. Wolking, F. Tritschler, J. Rieger, W. Wick, M. Weller, and J. P. Steinbach (2009)
Brain 132, 1509-1522
   Abstract »    Full Text »    PDF »
Akt Signals through the Mammalian Target of Rapamycin Pathway to Regulate CNS Myelination.
S. P. Narayanan, A. I. Flores, F. Wang, and W. B. Macklin (2009)
J. Neurosci. 29, 6860-6870
   Abstract »    Full Text »    PDF »
Akt Demoted in Glioblastoma.
P. K. Vogt and J. R. Hart (2009)
Science Signaling 2, pe26
   Abstract »    Full Text »    PDF »
Heterogeneous Nuclear Ribonucleoprotein K Is a Novel Regulator of Androgen Receptor Translation.
N. K. Mukhopadhyay, J. Kim, B. Cinar, A. Ramachandran, M. H. Hager, D. Di Vizio, R. M. Adam, M. A. Rubin, P. Raychaudhuri, A. De Benedetti, et al. (2009)
Cancer Res. 69, 2210-2218
   Abstract »    Full Text »    PDF »
A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression.
C. L. Buller, R. D. Loberg, M.-H. Fan, Q. Zhu, J. L. Park, E. Vesely, K. Inoki, K.-L. Guan, and F. C. Brosius III (2008)
Am J Physiol Cell Physiol 295, C836-C843
   Abstract »    Full Text »    PDF »
Disruption of Tsc2 in pancreatic {beta} cells induces {beta} cell mass expansion and improved glucose tolerance in a TORC1-dependent manner.
L. Rachdi, N. Balcazar, F. Osorio-Duque, L. Elghazi, A. Weiss, A. Gould, K. J. Chang-Chen, M. J. Gambello, and E. Bernal-Mizrachi (2008)
PNAS 105, 9250-9255
   Abstract »    Full Text »    PDF »
Mammalian Target of Rapamycin Repression by 3,3'-Diindolylmethane Inhibits Invasion and Angiogenesis in Platelet-Derived Growth Factor-D-Overexpressing PC3 Cells.
D. Kong, S. Banerjee, W. Huang, Y. Li, Z. Wang, H.-R. C. Kim, and F. H. Sarkar (2008)
Cancer Res. 68, 1927-1934
   Abstract »    Full Text »    PDF »
Identifying Breast Cancer Druggable Oncogenic Alterations: Lessons Learned and Future Targeted Options.
A. Ocana and A. Pandiella (2008)
Clin. Cancer Res. 14, 961-970
   Abstract »    Full Text »    PDF »
Up-regulation of Acetyl-CoA Carboxylase {alpha} and Fatty Acid Synthase by Human Epidermal Growth Factor Receptor 2 at the Translational Level in Breast Cancer Cells.
S. Yoon, M.-Y. Lee, S. W. Park, J.-S. Moon, Y.-K. Koh, Y.-H. Ahn, B.-W. Park, and K.-S. Kim (2007)
J. Biol. Chem. 282, 26122-26131
   Abstract »    Full Text »    PDF »
A Role for Mammalian Target of Rapamycin in Regulating T Cell Activation versus Anergy.
Y. Zheng, S. L. Collins, M. A. Lutz, A. N. Allen, T. P. Kole, P. E. Zarek, and J. D. Powell (2007)
J. Immunol. 178, 2163-2170
   Abstract »    Full Text »    PDF »
Rapamycin inhibits the growth and muscle-sparing effects of clenbuterol.
W. O. Kline, F. J. Panaro, H. Yang, and S. C. Bodine (2007)
J Appl Physiol 102, 740-747
   Abstract »    Full Text »    PDF »
Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling.
M. Baba, S.-B. Hong, N. Sharma, M. B. Warren, M. L. Nickerson, A. Iwamatsu, D. Esposito, W. K. Gillette, R. F. Hopkins III, J. L. Hartley, et al. (2006)
PNAS 103, 15552-15557
   Abstract »    Full Text »    PDF »
Activation of Mammalian Target of Rapamycin (mTOR) by Insulin Is Associated with Stimulation of 4EBP1 Binding to Dimeric mTOR Complex 1.
L. Wang, C. J. Rhodes, and J. C. Lawrence Jr. (2006)
J. Biol. Chem. 281, 24293-24303
   Abstract »    Full Text »    PDF »
Role of Insulin, Adipocyte Hormones, and Nutrient-Sensing Pathways in Regulating Fuel Metabolism and Energy Homeostasis: A Nutritional Perspective of Diabetes, Obesity, and Cancer.
S. Marshall (2006)
Sci. STKE 2006, re7
   Abstract »    Full Text »    PDF »
Regulation of Microtubule-Dependent Protein Transport by the TSC2/Mammalian Target of Rapamycin Pathway..
X. Jiang and R. S. Yeung (2006)
Cancer Res. 66, 5258-5269
   Abstract »    Full Text »    PDF »
TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity.
Q. Yang, K. Inoki, E. Kim, and K.-L. Guan (2006)
PNAS 103, 6811-6816
   Abstract »    Full Text »    PDF »
mTOR-dependent stimulation of the association of eIF4G and eIF3 by insulin.
T. E. Harris, A. Chi, J. Shabanowitz, D. F. Hunt, R. E. Rhoads, and J. C. Lawrence Jr (2006)
EMBO J. 25, 1659-1668
   Abstract »    Full Text »    PDF »
The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle.
T. A. Hornberger, W. K. Chu, Y. W. Mak, J. W. Hsiung, S. A. Huang, and S. Chien (2006)
PNAS 103, 4741-4746
   Abstract »    Full Text »    PDF »
Suppression of the mTOR-Raptor Signaling Pathway by the Inhibitor of Heat Shock Protein 90 Geldanamycin.
G. Ohji, S. Hidayat, A. Nakashima, C. Tokunaga, N. Oshiro, K.-i. Yoshino, K. Yokono, U. Kikkawa, and K. Yonezawa (2006)
J. Biochem. 139, 129-135
   Abstract »    Full Text »    PDF »
Tor2 Directly Phosphorylates the AGC Kinase Ypk2 To Regulate Actin Polarization.
Y. Kamada, Y. Fujioka, N. N. Suzuki, F. Inagaki, S. Wullschleger, R. Loewith, M. N. Hall, and Y. Ohsumi (2005)
Mol. Cell. Biol. 25, 7239-7248
   Abstract »    Full Text »    PDF »
The coordinate regulation of the p53 and mTOR pathways in cells.
Z. Feng, H. Zhang, A. J. Levine, and S. Jin (2005)
PNAS 102, 8204-8209
   Abstract »    Full Text »    PDF »
Farnesyltransferase inhibitors reverse altered growth and distribution of actin filaments in Tsc-deficient cells via inhibition of both rapamycin-sensitive and -insensitive pathways.
C.-L. Gau, J. Kato-Stankiewicz, C. Jiang, S. Miyamoto, L. Guo, and F. Tamanoi (2005)
Mol. Cancer Ther. 4, 918-926
   Abstract »    Full Text »    PDF »
Post-Transcriptional Regulation of the Androgen Receptor by Mammalian Target of Rapamycin.
B. Cinar, A. De Benedetti, and M. R. Freeman (2005)
Cancer Res. 65, 2547-2553
   Abstract »    Full Text »    PDF »
Adenoviral proteins mimic nutrient/growth signals to activate the mTOR pathway for viral replication.
C. O'Shea, K. Klupsch, S. Choi, B. Bagus, C. Soria, J. Shen, F. McCormick, and D. Stokoe (2005)
EMBO J. 24, 1211-1221
   Abstract »    Full Text »    PDF »
The Stress-inducted Proteins RTP801 and RTP801L Are Negative Regulators of the Mammalian Target of Rapamycin Pathway.
M. N. Corradetti, K. Inoki, and K.-L. Guan (2005)
J. Biol. Chem. 280, 9769-9772
   Abstract »    Full Text »    PDF »
Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic.
S. Kang, A. G. Bader, and P. K. Vogt (2005)
PNAS 102, 802-807
   Abstract »    Full Text »    PDF »
TOR Pathway: Linking Nutrient Sensing to Life Span.
P. Kapahi and B. Zid (2004)
Sci. Aging Knowl. Environ. 2004, pe34
   Abstract »    Full Text »
A Renaissance of Metabolite Sensing and Signaling: From Modular Domains to Riboswitches.
G. W. Templeton and G. B.G. Moorhead (2004)
PLANT CELL 16, 2252-2257
   Full Text »    PDF »
Upstream and downstream of mTOR.
N. Hay and N. Sonenberg (2004)
Genes & Dev. 18, 1926-1945
   Abstract »    Full Text »    PDF »
Enhanced T Cell Proliferation in Mice Lacking the p85{beta} Subunit of Phosphoinositide 3-Kinase.
J. A. Deane, M. J. Trifilo, C. M. Yballe, S. Choi, T. E. Lane, and D. A. Fruman (2004)
J. Immunol. 172, 6615-6625
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882