Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. STKE, 13 January 2004
Vol. 2004, Issue 215, p. re1
[DOI: 10.1126/stke.2152004re1]

REVIEWS

Flirting in Little Space: The ER/Mitochondria Ca2+ Liaison

Rosario Rizzuto1, Michael R. Duchen2, and Tullio Pozzan3,4*

1Department of Experimental and Diagnostic Medicine, Section of General Pathology, University of Ferrara, Italy.
2Department of Physiology, University College London, UK.
3Department of Biomedical Sciences and CNR Institute of Neurosciences, University of Padua, Italy.
4Venetian Institute of Molecular Medicine, Padua, Italy.

Abstract: Mitochondria have long been known to accumulate Ca2+; the apparent inconsistency between the low affinity of mitochondrial Ca2+ uptake mechanisms, the low concentration of global Ca2+ signals observed in cytoplasm, and the efficiency in intact cells of mitochondrial Ca2+ uptake led to the formulation of the "hotspot hypothesis." This hypothesis proposes that mitochondria preferentially accumulate Ca2+ at microdomains of elevated Ca2+ concentration ([Ca2+]) that exist near endoplasmic reticulum (ER) Ca2+ release sites and other Ca2+ channels. Physiological Ca2+ signals may affect mitochondrial function--both by stimulating key metabolic enzymes and, under some conditions, by promoting apoptosis. Mitochondria in turn may affect both Ca2+ release from the ER and capacitative Ca2+ entry across the plasma membrane, thereby shaping the size and duration of the intracellular Ca2+ signal. Interactions between mitochondria and the ER are critically dependent on the spatial localization of mitochondria within the cell. The molecular mechanisms that define the organization of mitochondria with regard to the ER and other Ca2+ sources, and the extent to which mitochondrial function varies among different cell types, are open questions whose answers remain to be determined.

*Corresponding author. E-mail: tullio.pozzan{at}unipd.it

Citation: R. Rizzuto, M. R. Duchen, T. Pozzan, Flirting in Little Space: The ER/Mitochondria Ca2+ Liaison. Sci. STKE 2004, re1 (2004).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Oncogenic K-Ras suppresses IP3-dependent Ca2+ release through remodelling of the isoform composition of IP3Rs and ER luminal Ca2+ levels in colorectal cancer cell lines.
C. Pierro, S. J. Cook, T. C. F. Foets, M. D. Bootman, and H. L. Roderick (2014)
J. Cell Sci. 127, 1607-1619
   Abstract »    Full Text »    PDF »
SLC25A23 augments mitochondrial Ca2+ uptake, interacts with MCU, and induces oxidative stress-mediated cell death.
N. E. Hoffman, H. C. Chandramoorthy, S. Shanmughapriya, X. Q. Zhang, S. Vallem, P. J. Doonan, K. Malliankaraman, S. Guo, S. Rajan, J. W. Elrod, et al. (2014)
Mol. Biol. Cell 25, 936-947
   Abstract »    Full Text »    PDF »
Probing Novel Roles of the Mitochondrial Uniporter in Ovarian Cancer Cells Using Nanoparticles.
R. R. Arvizo, D. F. Moyano, S. Saha, M. A. Thompson, R. Bhattacharya, V. M. Rotello, Y. S. Prakash, and P. Mukherjee (2013)
J. Biol. Chem. 288, 17610-17618
   Abstract »    Full Text »    PDF »
Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer's disease and related models.
L. Hedskog, C. M. Pinho, R. Filadi, A. Ronnback, L. Hertwig, B. Wiehager, P. Larssen, S. Gellhaar, A. Sandebring, M. Westerlund, et al. (2013)
PNAS 110, 7916-7921
   Abstract »    Full Text »    PDF »
Fragmented Inositol 1,4,5-Trisphosphate Receptors Retain Tetrameric Architecture and Form Functional Ca2+ Release Channels.
K. J. Alzayady, R. Chandrasekhar, and D. I. Yule (2013)
J. Biol. Chem. 288, 11122-11134
   Abstract »    Full Text »    PDF »
Measuring Local Gradients of Intramitochondrial [Ca2+] in Cardiac Myocytes During Sarcoplasmic Reticulum Ca2+ Release.
X. Lu, K. S. Ginsburg, S. Kettlewell, J. Bossuyt, G. L. Smith, and D. M. Bers (2013)
Circ. Res. 112, 424-431
   Abstract »    Full Text »    PDF »
Direct mobilisation of lysosomal Ca2+ triggers complex Ca2+ signals.
B. S. Kilpatrick, E. R. Eden, A. H. Schapira, C. E. Futter, and S. Patel (2013)
J. Cell Sci. 126, 60-66
   Abstract »    Full Text »    PDF »
Virtual nanoscopy: Generation of ultra-large high resolution electron microscopy maps.
F. G. A. Faas, M. C. Avramut, B. M. van den Berg, A. M. Mommaas, A. J. Koster, and R. B. G. Ravelli (2012)
J. Cell Biol. 198, 457-469
   Abstract »    Full Text »    PDF »
CD4+ T-cell synapses involve multiple distinct stages.
H. Ueda, M. K. Morphew, J. R. McIntosh, and M. M. Davis (2011)
PNAS 108, 17099-17104
   Abstract »    Full Text »    PDF »
Leucine Zipper EF Hand-containing Transmembrane Protein 1 (Letm1) and Uncoupling Proteins 2 and 3 (UCP2/3) Contribute to Two Distinct Mitochondrial Ca2+ Uptake Pathways.
M. Waldeck-Weiermair, C. Jean-Quartier, R. Rost, M. J. Khan, N. Vishnu, A. I. Bondarenko, H. Imamura, R. Malli, and W. F. Graier (2011)
J. Biol. Chem. 286, 28444-28455
   Abstract »    Full Text »    PDF »
The Role of Nogo and the Mitochondria-Endoplasmic Reticulum Unit in Pulmonary Hypertension.
G. Sutendra, P. Dromparis, P. Wright, S. Bonnet, A. Haromy, Z. Hao, M. S. McMurtry, M. Michalak, J. E. Vance, W. C. Sessa, et al. (2011)
Science Translational Medicine 3, 88ra55
   Abstract »    Full Text »    PDF »
Integrative Systems Models of Cardiac Excitation-Contraction Coupling.
J. L. Greenstein and R. L. Winslow (2011)
Circ. Res. 108, 70-84
   Abstract »    Full Text »    PDF »
Biology of Endoplasmic Reticulum Stress in the Heart.
J. Groenendyk, P. K. Sreenivasaiah, D. H. Kim, L. B. Agellon, and M. Michalak (2010)
Circ. Res. 107, 1185-1197
   Abstract »    Full Text »    PDF »
Trafficking of UL37 Proteins into Mitochondrion-Associated Membranes during Permissive Human Cytomegalovirus Infection.
P. Bozidis, C. D. Williamson, D. S. Wong, and A. M. Colberg-Poley (2010)
J. Virol. 84, 7898-7903
   Abstract »    Full Text »    PDF »
Rapid Procoagulant Phosphatidylserine Exposure Relies on High Cytosolic Calcium Rather Than on Mitochondrial Depolarization.
A. Arachiche, D. Kerbiriou-Nabias, I. Garcin, T. Letellier, and J. Dachary-Prigent (2009)
Arterioscler Thromb Vasc Biol 29, 1883-1889
   Abstract »    Full Text »    PDF »
Mitochondrial degeneration and not apoptosis is the primary cause of embryonic lethality in ceramide transfer protein mutant mice.
X. Wang, R. P. Rao, T. Kosakowska-Cholody, M. A. Masood, E. Southon, H. Zhang, C. Berthet, K. Nagashim, T. K. Veenstra, L. Tessarollo, et al. (2009)
J. Cell Biol. 184, 143-158
   Abstract »    Full Text »    PDF »
Purinergic Control of T Cell Activation by ATP Released Through Pannexin-1 Hemichannels.
U. Schenk, A. M. Westendorf, E. Radaelli, A. Casati, M. Ferro, M. Fumagalli, C. Verderio, J. Buer, E. Scanziani, and F. Grassi (2008)
Science Signaling 1, ra6
   Abstract »    Full Text »    PDF »
Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis.
T. Szado, V. Vanderheyden, J. B. Parys, H. De Smedt, K. Rietdorf, L. Kotelevets, E. Chastre, F. Khan, U. Landegren, O. Soderberg, et al. (2008)
PNAS 105, 2427-2432
   Abstract »    Full Text »    PDF »
The Inositol 1,4,5-Trisphosphate Receptor Is Required to Signal Autophagic Cell Death.
D. Lam, A. Kosta, M.-F. Luciani, and P. Golstein (2008)
Mol. Biol. Cell 19, 691-700
   Abstract »    Full Text »    PDF »
Endoplasmic reticulum remains continuous and undergoes sheet-to-tubule transformation during cell division in mammalian cells.
M. Puhka, H. Vihinen, M. Joensuu, and E. Jokitalo (2007)
J. Cell Biol. 179, 895-909
   Abstract »    Full Text »    PDF »
Transient Receptor Potential Channel 6 Mediated, Localized Cytosolic [Na+] Transients Drive Na+/Ca2+ Exchanger Mediated Ca2+ Entry in Purinergically Stimulated Aorta Smooth Muscle Cells.
D. Poburko, C.-H. Liao, V. S. Lemos, E. Lin, Y. Maruyama, W. C. Cole, and C. van Breemen (2007)
Circ. Res. 101, 1030-1038
   Abstract »    Full Text »    PDF »
Endothelial Mitochondria: Contributing to Vascular Function and Disease.
S. M. Davidson and M. R. Duchen (2007)
Circ. Res. 100, 1128-1141
   Abstract »    Full Text »    PDF »
Mitochondrial Membrane Permeabilization in Cell Death.
G. Kroemer, L. Galluzzi, and C. Brenner (2007)
Physiol Rev 87, 99-163
   Abstract »    Full Text »    PDF »
Mitochondrial reactive oxygen species and Ca2+ signaling.
C. Camello-Almaraz, P. J. Gomez-Pinilla, M. J. Pozo, and P. J. Camello (2006)
Am J Physiol Cell Physiol 291, C1082-C1088
   Abstract »    Full Text »    PDF »
Mitochondria at the Synapse.
C. V. Ly and P. Verstreken (2006)
Neuroscientist 12, 291-299
   Abstract »    PDF »
Mitochondrial Buffering of Calcium in the Heart: Potential Mechanism for Linking Cyclic Energetic Cost With Energy Supply?.
P. G. Sullivan, C. W. Balke, and K. A. Esser (2006)
Circ. Res. 99, 109-110
   Full Text »    PDF »
Elevated Cytosolic Na+ Decreases Mitochondrial Ca2+ Uptake During Excitation-Contraction Coupling and Impairs Energetic Adaptation in Cardiac Myocytes.
C. Maack, S. Cortassa, M. A. Aon, A. N. Ganesan, T. Liu, and B. O'Rourke (2006)
Circ. Res. 99, 172-182
   Abstract »    Full Text »    PDF »
An intimate collaboration between peroxisomes and lipid bodies.
D. Binns, T. Januszewski, Y. Chen, J. Hill, V. S. Markin, Y. Zhao, C. Gilpin, K. D. Chapman, R. G.W. Anderson, and J. M. Goodman (2006)
J. Cell Biol. 173, 719-731
   Abstract »    Full Text »    PDF »
Plasma Membrane Localization of Ras Requires Class C Vps Proteins and Functional Mitochondria in Saccharomyces cerevisiae.
G. Wang and R. J. Deschenes (2006)
Mol. Cell. Biol. 26, 3243-3255
   Abstract »    Full Text »    PDF »
Calcium at Fertilization and in Early Development.
M. Whitaker (2006)
Physiol Rev 86, 25-88
   Abstract »    Full Text »    PDF »
Microdomains of Intracellular Ca2+: Molecular Determinants and Functional Consequences.
R. Rizzuto and T. Pozzan (2006)
Physiol Rev 86, 369-408
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882