Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. STKE, 10 February 2004
Vol. 2004, Issue 219, p. pl2
[DOI: 10.1126/stke.2192004pl2]

PROTOCOLS

Computational Alanine Scanning of Protein-Protein Interfaces

Tanja Kortemme1,2*, David E. Kim2, and David Baker2*

1Department of Biopharmaceutical Sciences and California Institute for Quantitative Biomedical Research, University of California San Francisco, CA 94107, USA.
2Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Box 357350, Seattle, WA 98195, USA.

Abstract: Protein-protein interactions are key components of all signal transduction processes, so methods to alter these interactions promise to become important tools in dissecting function of connectivities in these networks. We have developed a fast computational approach for the prediction of energetically important amino acid residues in protein-protein interfaces (available at http://robetta.bakerlab.org/alaninescan), which we, following Peter Kollman, have termed "computational alanine scanning." The input consists of a three-dimensional structure of a protein-protein complex; output is a list of "hot spots," or amino acid side chains that are predicted to significantly destabilize the interface when mutated to alanine, analogous to the results of experimental alanine-scanning mutagenesis. 79% of hot spots and 68% of neutral residues were correctly predicted in a test of 233 mutations in 19 protein-protein complexes. A single interface can be analyzed in minutes. The computational methodology has been validated by the successful design of protein interfaces with new specificity and activity, and has yielded new insights into the mechanisms of receptor specificity and promiscuity in biological systems.

*Corresponding authors. Telephone, +1-206-543-1295; fax +1-206-685-1792; e-mail, dabaker{at}u.washington.edu (D.B.); e-mail, kortemme{at}u.washington.edu (T. K.)

Citation: T. Kortemme, D. E. Kim, D. Baker, Computational Alanine Scanning of Protein-Protein Interfaces. Sci. STKE 2004, pl2 (2004).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
HippDB: a database of readily targeted helical protein-protein interactions.
C. M. Bergey, A. M. Watkins, and P. S. Arora (2013)
Bioinformatics 29, 2806-2807
   Abstract »    Full Text »    PDF »
BeAtMuSiC: prediction of changes in protein-protein binding affinity on mutations.
Y. Dehouck, J. M. Kwasigroch, M. Rooman, and D. Gilis (2013)
Nucleic Acids Res. 41, W333-W339
   Abstract »    Full Text »    PDF »
Mutations in DNA Methyltransferase (DNMT3A) Observed in Acute Myeloid Leukemia Patients Disrupt Processive Methylation.
C. Holz-Schietinger, D. M. Matje, and N. O. Reich (2012)
J. Biol. Chem. 287, 30941-30951
   Abstract »    Full Text »    PDF »
Structural analysis and dimerization profile of the SCAN domain of the pluripotency factor Zfp206.
Y. Liang, F. Huimei Hong, P. Ganesan, S. Jiang, R. Jauch, L. W. Stanton, and P. R. Kolatkar (2012)
Nucleic Acids Res. 40, 8721-8732
   Abstract »    Full Text »    PDF »
Computational and Experimental Analysis of the Transmembrane Domain 4/5 Dimerization Interface of the Serotonin 5-HT1A Receptor.
N. Gorinski, N. Kowalsman, U. Renner, A. Wirth, M. T. Reinartz, R. Seifert, A. Zeug, E. Ponimaskin, and M. Y. Niv (2012)
Mol. Pharmacol. 82, 448-463
   Abstract »    Full Text »    PDF »
SiteComp: a server for ligand binding site analysis in protein structures.
Y. Lin, S. Yoo, and R. Sanchez (2012)
Bioinformatics 28, 1172-1173
   Abstract »    Full Text »    PDF »
An enumerative stepwise ansatz enables atomic-accuracy RNA loop modeling.
P. Sripakdeevong, W. Kladwang, and R. Das (2011)
PNAS 108, 20573-20578
   Abstract »    Full Text »    PDF »
Identification of Interacting Hot Spots in the {beta}3 Integrin Stalk Using Comprehensive Interface Design.
J. E. Donald, H. Zhu, R. I. Litvinov, W. F. DeGrado, and J. S. Bennett (2010)
J. Biol. Chem. 285, 38658-38665
   Abstract »    Full Text »    PDF »
Probing the mechanism of cellulosome attachment to the Clostridium thermocellum cell surface: computer simulation of the Type II cohesin-dockerin complex and its variants.
J. Xu and J. C. Smith (2010)
Protein Eng. Des. Sel. 23, 759-768
   Abstract »    Full Text »    PDF »
HotPoint: hot spot prediction server for protein interfaces.
N. Tuncbag, O. Keskin, and A. Gursoy (2010)
Nucleic Acids Res. 38, W402-W406
   Abstract »    Full Text »    PDF »
RosettaBackrub--a web server for flexible backbone protein structure modeling and design.
F. Lauck, C. A. Smith, G. F. Friedland, E. L. Humphris, and T. Kortemme (2010)
Nucleic Acids Res. 38, W569-W575
   Abstract »    Full Text »    PDF »
ANCHOR: a web server and database for analysis of protein-protein interaction binding pockets for drug discovery.
L. M. C. Meireles, A. S. Domling, and C. J. Camacho (2010)
Nucleic Acids Res. 38, W407-W411
   Abstract »    Full Text »    PDF »
Alanine-shaving Mutagenesis to Determine Key Interfacial Residues Governing the Assembly of a Nano-cage Maxi-ferritin.
Y. Zhang, S. Raudah, H. Teo, G. W. S. Teo, R. Fan, X. Sun, and B. P. Orner (2010)
J. Biol. Chem. 285, 12078-12086
   Abstract »    Full Text »    PDF »
A survey of available tools and web servers for analysis of protein-protein interactions and interfaces.
N. Tuncbag, G. Kar, O. Keskin, A. Gursoy, and R. Nussinov (2009)
Brief Bioinform 10, 217-232
   Abstract »    Full Text »    PDF »
Protein structure prediction and analysis using the Robetta server.
D. E. Kim, D. Chivian, and D. Baker (2004)
Nucleic Acids Res. 32, W526-W531
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882