Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. STKE, 17 February 2004
Vol. 2004, Issue 220, p. pl6
[DOI: 10.1126/stke.2202004pl6]

PROTOCOLS

Spatiotemporal Gene Expression Targeting with the TARGET and Gene-Switch Systems in Drosophila

Sean E. McGuire1*, Zhengmei Mao1*, and Ronald L. Davis1,2*

1Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
2Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas 77030, USA.

Abstract: Targeted gene expression has become a standard technique for the study of biological questions in Drosophila. Until recently, transgene expression could be targeted in the dimension of either time or space, but not both. Several new systems have recently been developed to direct transgene expression simultaneously in both time and space. We describe here two such systems that we developed in our laboratory. The first system provides a general method for temporal and regional gene expression targeting (TARGET) with the conventional GAL4-upstream activator sequence (UAS) system and a temperature-sensitive GAL80 molecule, which represses GAL4 transcriptional activity at permissive temperatures. The second system, termed Gene-Switch, is based on a GAL4-progesterone receptor chimera that is hormone-inducible. We have used both systems for simultaneous spatial and temporal rescue of memory dysfunction in the rutabaga (rut) memory mutant of Drosophila. In this protocol, we provide guidelines for the use of these two novel systems, which should have general utility in studying Drosophila biology and in using the fly as a model for human disease.

*Corresponding authors. E-mail: seanmcguire{at}sbcglobal.net (S.E.M.); mao{at}bcm.tmc.edu (Z.M.); rdavis{at}bcm.tmc.edu (R.L.D.). Phone: 713-798-6641; Fax: 713-798-8005.

Citation: S. E. McGuire, Z. Mao, R. L. Davis, Spatiotemporal Gene Expression Targeting with the TARGET and Gene-Switch Systems in Drosophila. Sci. STKE 2004, pl6 (2004).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Cyclic nucleotide-gated channels, calmodulin, adenylyl cyclase, and calcium/calmodulin-dependent protein kinase II are required for late, but not early, long-term memory formation in the honeybee.
Y. Matsumoto, J.-C. Sandoz, J.-M. Devaud, F. Lormant, M. Mizunami, and M. Giurfa (2014)
Learn. Mem. 21, 272-286
   Abstract »    Full Text »    PDF »
The corepressor Atrophin specifies odorant receptor expression in Drosophila.
L. Alkhori, A. Ost, and M. Alenius (2014)
FASEB J 28, 1355-1364
   Abstract »    Full Text »    PDF »
Intestinal epithelium-derived BMP controls stem cell self-renewal in Drosophila adult midgut.
A. Tian and J. Jiang (2014)
eLife Sci 3, e01857
   Abstract »    Full Text »    PDF »
Retrograde BMP Signaling at the Synapse: A Permissive Signal for Synapse Maturation and Activity-Dependent Plasticity.
B. Berke, J. Wittnam, E. McNeill, D. L. Van Vactor, and H. Keshishian (2013)
J. Neurosci. 33, 17937-17950
   Abstract »    Full Text »    PDF »
Graded Encoding of Food Odor Value in the Drosophila Brain.
J. Beshel and Y. Zhong (2013)
J. Neurosci. 33, 15693-15704
   Abstract »    Full Text »    PDF »
Drosophila Neuroligin 4 Regulates Sleep through Modulating GABA Transmission.
Y. Li, Z. Zhou, X. Zhang, H. Tong, P. Li, Z. C. Zhang, Z. Jia, W. Xie, and J. Han (2013)
J. Neurosci. 33, 15545-15554
   Abstract »    Full Text »    PDF »
Female-biased dimorphism underlies a female-specific role for post-embryonic Ilp7 neurons in Drosophila fertility.
M. C. Castellanos, J. C. Y. Tang, and D. W. Allan (2013)
Development 140, 3915-3926
   Abstract »    Full Text »    PDF »
TSC1/2 regulates intestinal stem cell maintenance and lineage differentiation through Rheb-TORC1-S6K but independently of nutritional status or Notch regulation.
Z. Quan, P. Sun, G. Lin, and R. Xi (2013)
J. Cell Sci. 126, 3884-3892
   Abstract »    Full Text »    PDF »
Sequential activation of ETS proteins provides a sustained transcriptional response to EGFR signaling.
A. Shwartz, S. Yogev, E. D. Schejter, and B.-Z. Shilo (2013)
Development 140, 2746-2754
   Abstract »    Full Text »    PDF »
A Role for Drosophila ATX2 in Activation of PER Translation and Circadian Behavior.
Y. Zhang, J. Ling, C. Yuan, R. Dubruille, and P. Emery (2013)
Science 340, 879-882
   Abstract »    Full Text »    PDF »
MicroRNA-276a Functions in Ellipsoid Body and Mushroom Body Neurons for Naive and Conditioned Olfactory Avoidance in Drosophila.
W. Li, M. Cressy, H. Qin, T. Fulga, D. Van Vactor, and J. Dubnau (2013)
J. Neurosci. 33, 5821-5833
   Abstract »    Full Text »    PDF »
The Homeobox Transcription Factor Cut Coordinates Patterning and Growth During Drosophila Airway Remodeling.
C. Pitsouli and N. Perrimon (2013)
Science Signaling 6, ra12
   Abstract »    Full Text »    PDF »
The Abelson tyrosine kinase regulates Notch endocytosis and signaling to maintain neuronal cell fate in Drosophila photoreceptors.
W. Xiong, S. A. Morillo, and I. Rebay (2013)
Development 140, 176-184
   Abstract »    Full Text »    PDF »
Consolidated and Labile Odor Memory Are Separately Encoded within the Drosophila Brain.
L. Scheunemann, E. Jost, A. Richlitzki, J. P. Day, S. Sebastian, A. S. Thum, M. Efetova, S.-A. Davies, and M. Schwarzel (2012)
J. Neurosci. 32, 17163-17171
   Abstract »    Full Text »    PDF »
Bone morphogenetic protein- and mating-dependent secretory cell growth and migration in the Drosophila accessory gland.
A. Leiblich, L. Marsden, C. Gandy, L. Corrigan, R. Jenkins, F. Hamdy, and C. Wilson (2012)
PNAS 109, 19292-19297
   Abstract »    Full Text »    PDF »
Integration of Taste and Calorie Sensing in Drosophila.
J. W. Stafford, K. M. Lynd, A. Y. Jung, and M. D. Gordon (2012)
J. Neurosci. 32, 14767-14774
   Abstract »    Full Text »    PDF »
Deleterious effects of neuronal accumulation of glycogen in flies and mice.
J. Duran, M. F. Tevy, M. Garcia-Rocha, J. Calbo, M. Milan, and J. J. Guinovart (2012)
EMBO Mol Med. 4, 719-729
   Abstract »    Full Text »    PDF »
Kinesin Heavy Chain Function in Drosophila Glial Cells Controls Neuronal Activity.
I. Schmidt, S. Thomas, P. Kain, B. Risse, E. Naffin, and C. Klambt (2012)
J. Neurosci. 32, 7466-7476
   Abstract »    Full Text »    PDF »
Temporally tuned neuronal differentiation supports the functional remodeling of a neuronal network in Drosophila.
L. Veverytsa and D. W. Allan (2012)
PNAS 109, E748-E756
   Abstract »    Full Text »    PDF »
Control of target gene specificity during metamorphosis by the steroid response gene E93.
X. Mou, D. M. Duncan, E. H. Baehrecke, and I. Duncan (2012)
PNAS 109, 2949-2954
   Abstract »    Full Text »    PDF »
Different Requirements for Proteolytic Processing of Bone Morphogenetic Protein 5/6/7/8 Ligands in Drosophila melanogaster.
C. Fritsch, A. Sawala, R. Harris, A. Maartens, C. Sutcliffe, H. L. Ashe, and R. P. Ray (2012)
J. Biol. Chem. 287, 5942-5953
   Abstract »    Full Text »    PDF »
Ets transcription factor Pointed promotes the generation of intermediate neural progenitors in Drosophila larval brains.
S. Zhu, S. Barshow, J. Wildonger, L. Y. Jan, and Y.-N. Jan (2011)
PNAS 108, 20615-20620
   Abstract »    Full Text »    PDF »
Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species.
L. Qian, J. D. Wythe, J. Liu, J. Cartry, G. Vogler, B. Mohapatra, R. T. Otway, Y. Huang, I. N. King, M. Maillet, et al. (2011)
J. Cell Biol. 193, 1181-1196
   Abstract »    Full Text »    PDF »
The actin nucleator WASp is required for myoblast fusion during adult Drosophila myogenesis.
P. Mukherjee, B. Gildor, B.-Z. Shilo, K. VijayRaghavan, and E. D. Schejter (2011)
Development 138, 2347-2357
   Abstract »    Full Text »    PDF »
Polyglutamine Atrophin provokes neurodegeneration in Drosophila by repressing fat.
F. Napoletano, S. Occhi, P. Calamita, V. Volpi, E. Blanc, B. Charroux, J. Royet, and M. Fanto (2011)
EMBO J. 30, 945-958
   Abstract »    Full Text »    PDF »
Cell migration in Drosophila optic lobe neurons is controlled by eyeless/Pax6.
J. Morante, T. Erclik, and C. Desplan (2011)
Development 138, 687-693
   Abstract »    Full Text »    PDF »
Drosophila tao Controls Mushroom Body Development and Ethanol-Stimulated Behavior through par-1.
I. King, L. T.- Y. Tsai, R. Pflanz, A. Voigt, S. Lee, H. Jackle, B. Lu, and U. Heberlein (2011)
J. Neurosci. 31, 1139-1148
   Abstract »    Full Text »    PDF »
Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways.
F. Ren, B. Wang, T. Yue, E.-Y. Yun, Y. T. Ip, and J. Jiang (2010)
PNAS 107, 21064-21069
   Abstract »    Full Text »    PDF »
Dampened activity of E2F1-DP and Myb-MuvB transcription factors in Drosophila endocycling cells.
S. B. Maqbool, S. Mehrotra, A. Kolpakas, C. Durden, B. Zhang, H. Zhong, and B. R. Calvi (2010)
J. Cell Sci. 123, 4095-4106
   Abstract »    Full Text »    PDF »
Embryonic multipotent progenitors remodel the Drosophila airways during metamorphosis.
C. Pitsouli and N. Perrimon (2010)
Development 137, 3615-3624
   Abstract »    Full Text »    PDF »
Light-induced translocation of Drosophila visual Arrestin2 depends on Rac2.
R. Elsaesser, D. Kalra, R. Li, and C. Montell (2010)
PNAS 107, 4740-4745
   Abstract »    Full Text »    PDF »
Differential Effects of Tau on the Integrity and Function of Neurons Essential for Learning in Drosophila.
S. Kosmidis, S. Grammenoudi, K. Papanikolopoulou, and E. M. C. Skoulakis (2010)
J. Neurosci. 30, 464-477
   Abstract »    Full Text »    PDF »
Wingless Promotes Proliferative Growth in a Gradient-Independent Manner.
L. A. Baena-Lopez, X. Franch-Marro, and J.-P. Vincent (2009)
Science Signaling 2, ra60
   Abstract »    Full Text »    PDF »
A Dual Role for the Adaptor Protein DRK in Drosophila Olfactory Learning and Memory.
A. Moressis, A. R. Friedrich, E. Pavlopoulos, R. L. Davis, and E. M. C. Skoulakis (2009)
J. Neurosci. 29, 2611-2625
   Abstract »    Full Text »    PDF »
Bursicon Functions within the Drosophila CNS to Modulate Wing Expansion Behavior, Hormone Secretion, and Cell Death.
N. C. Peabody, F. Diao, H. Luan, H. Wang, E. M. Dewey, H.-W. Honegger, and B. H. White (2008)
J. Neurosci. 28, 14379-14391
   Abstract »    Full Text »    PDF »
Notch signalling coordinates tissue growth and wing fate specification in Drosophila.
N. Rafel and M. Milan (2008)
Development 135, 3995-4001
   Abstract »    Full Text »    PDF »
The anaphase-promoting complex/cyclosome (APC/C) is required for rereplication control in endoreplication cycles.
N. Zielke, S. Querings, C. Rottig, C. Lehner, and F. Sprenger (2008)
Genes & Dev. 22, 1690-1703
   Abstract »    Full Text »    PDF »
A Wingless and Notch double-repression mechanism regulates G1-S transition in the Drosophila wing.
H. Herranz, L. Perez, F. A. Martin, and M. Milan (2008)
EMBO J. 27, 1633-1645
   Abstract »    Full Text »    PDF »
Integrative physiology, functional genomics and the phenotype gap: a guide for comparative physiologists.
J. A. T. Dow (2007)
J. Exp. Biol. 210, 1632-1640
   Abstract »    Full Text »    PDF »
An efficient promoter trap for detection of patterned gene expression and subsequent functional analysis in Drosophila.
C. Larsen, X. Franch-Marro, V. Hartenstein, C. Alexandre, and J.-P. Vincent (2006)
PNAS 103, 17813-17817
   Abstract »    Full Text »    PDF »
Wiring stability of the adult Drosophila olfactory circuit after lesion..
D. Berdnik, T. Chihara, A. Couto, and L. Luo (2006)
J. Neurosci. 26, 3367-3376
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882