Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. STKE, 29 June 2004
Vol. 2004, Issue 239, p. re9
[DOI: 10.1126/stke.2392004re9]


The Domains of Apoptosis: A Genomics Perspective

John C. Reed*, Kutbuddin S. Doctor, and Adam Godzik*

The Burnham Institute, La Jolla, CA 92037, USA.

Abstract: Apoptosis plays important roles in many facets of normal physiology in animal species, including programmed cell death associated with fetal development or metamorphosis, tissue homeostasis, immune cell education, and some aspects of aging. Defects in the regulation of apoptosis contribute to multiple diseases associated with either inappropriate cell loss or pathological cell accumulation. Host-pathogen interactions have additionally provided evolutionary pressure for apoptosis as a defense mechanism against viruses and microbes, sometimes linking apoptosis mechanisms with inflammatory responses. To a large extent, the apoptosis machinery can be viewed as a network, with different nodes connected by physical interactions of evolutionarily conserved domains. These domains can serve as signatures for identification of proteins involved in the network. In particular, the caspase recruitment domains (CARDs); death effector domains (DEDs); death domains (DDs); BIR (baculovirus IAP repeat) domains of inhibitor of apoptosis proteins (IAPs); Bcl-2 family proteins; caspase protease domains; and endonuclease-associated CIDE (cell death–inducing DFF45-like effector) domains are found in common in proteins involved in apoptosis. In the genomes of mammals, genes encoding proteins that carry one or more of these signature domains are often present in multiple copies, making up diverse gene families that permit tissue-specific and highly regulated control of cell life and death decisions through combinations of stimulus-specific gene expression and complex protein interaction networks. In this Review, we organize the repertoire of apoptosis proteins of humans into domain families, drawing comparisons with homologs in other vertebrate and invertebrate animal species, and discuss some of the functional implications of these findings.

*To whom correspondence should be addressed. E-mail: jreed{at} (J.C.R.); adam{at} (A.G.)

Citation: J. C. Reed, K. S. Doctor, A. Godzik, The Domains of Apoptosis: A Genomics Perspective. Sci. STKE 2004, re9 (2004).

Read the Full Text

A Genome-Wide RNA Interference Screen Identifies Caspase 4 as a Factor Required for Tumor Necrosis Factor Alpha Signaling.
D. Nickles, C. Falschlehner, M. Metzig, and M. Boutros (2012)
Mol. Cell. Biol. 32, 3372-3381
   Abstract »    Full Text »    PDF »
A comprehensive manually curated protein-protein interaction database for the Death Domain superfamily.
D. Kwon, J. H. Yoon, S.-Y. Shin, T.-H. Jang, H.-G. Kim, I. So, J.-H. Jeon, and H. H. Park (2012)
Nucleic Acids Res. 40, D331-D336
   Abstract »    Full Text »    PDF »
Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction.
R. Iwasawa, A.-L. Mahul-Mellier, C. Datler, E. Pazarentzos, and S. Grimm (2011)
EMBO J. 30, 556-568
   Abstract »    Full Text »    PDF »
cIAP1 Cooperatively Inhibits Procaspase-3 Activation by the Caspase-9 Apoptosome.
S. P. Burke, L. Smith, and J. B. Smith (2010)
J. Biol. Chem. 285, 30061-30068
   Abstract »    Full Text »    PDF »
Drosophila IAP antagonists form multimeric complexes to promote cell death.
C. Sandu, H. D. Ryoo, and H. Steller (2010)
J. Cell Biol. 190, 1039-1052
   Abstract »    Full Text »    PDF »
Signals: Tinkering with Domains.
E. Bornberg-Bauer (2010)
Science Signaling 3, pe31
   Abstract »    Full Text »    PDF »
Identification of Novel in Vivo Phosphorylation Sites of the Human Proapoptotic Protein BAD: PORE-FORMING ACTIVITY OF BAD IS REGULATED BY PHOSPHORYLATION.
L. Polzien, A. Baljuls, U. E. E. Rennefahrt, A. Fischer, W. Schmitz, R. P. Zahedi, A. Sickmann, R. Metz, S. Albert, R. Benz, et al. (2009)
J. Biol. Chem. 284, 28004-28020
   Abstract »    Full Text »    PDF »
Caspase-2 activation in the absence of PIDDosome formation.
C. Manzl, G. Krumschnabel, F. Bock, B. Sohm, V. Labi, F. Baumgartner, E. Logette, J. Tschopp, and A. Villunger (2009)
J. Cell Biol. 185, 291-303
   Abstract »    Full Text »    PDF »
Gambogic acid is an antagonist of antiapoptotic Bcl-2 family proteins.
D. Zhai, C. Jin, C.-w. Shiau, S. Kitada, A. C. Satterthwait, and J. C. Reed (2008)
Mol. Cancer Ther. 7, 1639-1646
   Abstract »    Full Text »    PDF »
Differential Regulation of Bax and Bak by Anti-apoptotic Bcl-2 Family Proteins Bcl-B and Mcl-1.
D. Zhai, C. Jin, Z. Huang, A. C. Satterthwait, and J. C. Reed (2008)
J. Biol. Chem. 283, 9580-9586
   Abstract »    Full Text »    PDF »
Nur77 converts phenotype of Bcl-B, an antiapoptotic protein expressed in plasma cells and myeloma.
F. Luciano, M. Krajewska, P. Ortiz-Rubio, S. Krajewski, D. Zhai, B. Faustin, J.-M. Bruey, B. Bailly-Maitre, A. Lichtenstein, S. K. Kolluri, et al. (2007)
Blood 109, 3849-3855
   Abstract »    Full Text »    PDF »
Targeting the apoptotic machinery in pancreatic cancers using small-molecule antagonists of the X-linked inhibitor of apoptosis protein.
C. A. Karikari, I. Roy, E. Tryggestad, G. Feldmann, C. Pinilla, K. Welsh, J. C. Reed, E. P. Armour, J. Wong, J. Herman, et al. (2007)
Mol. Cancer Ther. 6, 957-966
   Abstract »    Full Text »    PDF »
Anaplastic Lymphoma Kinase Is a Dependence Receptor Whose Proapoptotic Functions Are Activated by Caspase Cleavage.
J. Mourali, A. Benard, F. C. Lourenco, C. Monnet, C. Greenland, C. Moog-Lutz, C. Racaud-Sultan, D. Gonzalez-Dunia, M. Vigny, P. Mehlen, et al. (2006)
Mol. Cell. Biol. 26, 6209-6222
   Abstract »    Full Text »    PDF »
Phylogenomics of Life-Or-Death Switches in Multicellular Animals: Bcl-2, BH3-Only, and BNip Families of Apoptotic Regulators.
A. Aouacheria, F. Brunet, and M. Gouy (2005)
Mol. Biol. Evol. 22, 2395-2416
   Abstract »    Full Text »    PDF »
WT1 Induces Apoptosis through Transcriptional Regulation of the Proapoptotic Bcl-2 Family Member Bak.
D. J. Morrison, M. A. English, and J. D. Licht (2005)
Cancer Res. 65, 8174-8182
   Abstract »    Full Text »    PDF »
Caspase-1 Is a Direct Target Gene of ETS1 and Plays a Role in ETS1-Induced Apoptosis.
H. Pei, C. Li, Y. Adereth, T. Hsu, D. K. Watson, and R. Li (2005)
Cancer Res. 65, 7205-7213
   Abstract »    Full Text »    PDF »
Analysis of Apoptosis Protein Expression in Early-Stage Colorectal Cancer Suggests Opportunities for New Prognostic Biomarkers.
M. Krajewska, H. Kim, C. Kim, H. Kang, K. Welsh, S.-i. Matsuzawa, M. Tsukamoto, R. G. Thomas, N. Assa-Munt, Z. Piao, et al. (2005)
Clin. Cancer Res. 11, 5451-5461
   Abstract »    Full Text »    PDF »
Human Immunodeficiency Virus Type 1 Nef Potently Induces Apoptosis in Primary Human Brain Microvascular Endothelial Cells via the Activation of Caspases.
E. A. Acheampong, Z. Parveen, L. W. Muthoga, M. Kalayeh, M. Mukhtar, and R. J. Pomerantz (2005)
J. Virol. 79, 4257-4269
   Abstract »    Full Text »    PDF »
Migrate, Differentiate, Proliferate, or Die: Pleiotropic Functions of an Apical "Apoptotic Caspase".
S. Kumar (2004)
Sci. STKE 2004, pe49
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882