Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. STKE, 22 February 2005
Vol. 2005, Issue 272, p. re3
[DOI: 10.1126/stke.2722005re3]


The TRP Superfamily of Cation Channels

Craig Montell*

Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.

Abstract: The transient receptor potential (TRP) protein superfamily consists of a diverse group of cation channels that bear structural similarities to Drosophila TRP. TRP channels play important roles in nonexcitable cells; however, an emerging theme is that many TRP-related proteins are expressed predominantly in the nervous system and function in sensory physiology. The TRP superfamily is divided into seven subfamilies, the first of which is composed of the "classical" TRPs" (TRPC subfamily). Some TRPCs may be store-operated channels, whereas others appear to be activated by production of diacylglycerol or regulated through an exocytotic mechanism. Many members of a second subfamily (TRPV) function in sensory physiology and respond to heat, changes in osmolarity, odorants, and mechanical stimuli. Two members of the TRPM family function in sensory perception and three TRPM proteins are chanzymes, which contain C-terminal enzyme domains. The fourth and fifth subfamilies, TRPN and TRPA, include proteins with many ankyrin repeats. TRPN proteins function in mechanotransduction, whereas TRPA1 is activated by noxious cold and is also required for the auditory response. In addition to these five closely related TRP subfamilies, which comprise the Group 1 TRPs, members of the two Group 2 TRP subfamilies, TRPP and TRPML, are distantly related to the group 1 TRPs. Mutations in the founding members of these latter subfamilies are responsible for human diseases. Each of the TRP subfamilies are represented by members in worms and flies, providing the potential for using genetic approaches to characterize the normal functions and activation mechanisms of these channels.

* To whom correspondence should be addressed. E-mail: cmontell{at}

Citation: C. Montell, The TRP Superfamily of Cation Channels. Sci. STKE 2005, re3 (2005).

Read the Full Text

Differential Effects of the G{beta}5-RGS7 Complex on Muscarinic M3 Receptor-Induced Ca2+ Influx and Release.
D. Karpinsky-Semper, C.-H. Volmar, S. P. Brothers, and V. Z. Slepak (2014)
Mol. Pharmacol. 85, 758-768
   Abstract »    Full Text »    PDF »
Sodium-Mediated Plateau Potentials in Lumbar Motoneurons of Neonatal Rats.
M. Bouhadfane, S. Tazerart, A. Moqrich, L. Vinay, and F. Brocard (2013)
J. Neurosci. 33, 15626-15641
   Abstract »    Full Text »    PDF »
Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo.
B. Katz, T. Oberacker, D. Richter, H. Tzadok, M. Peters, B. Minke, and A. Huber (2013)
J. Cell Sci. 126, 3121-3133
   Abstract »    Full Text »    PDF »
New TRPC6 gain-of-function mutation in a non-consanguineous Dutch family with late-onset focal segmental glomerulosclerosis.
J. M. Hofstra, S. Lainez, W. H. M. van Kuijk, J. Schoots, M. P. A. Baltissen, L. H. Hoefsloot, N. V. A. M. Knoers, J. H. M. Berden, R. J. M. Bindels, J. van der Vlag, et al. (2013)
Nephrol. Dial. Transplant. 28, 1830-1838
   Abstract »    Full Text »    PDF »
{beta}ENaC is required for whole cell mechanically gated currents in renal vascular smooth muscle cells.
W.-S. Chung, J. L. Weissman, J. Farley, and H. A. Drummond (2013)
Am J Physiol Renal Physiol 304, F1428-F1437
   Abstract »    Full Text »    PDF »
Role of TRPM2 in cell proliferation and susceptibility to oxidative stress.
S.-j. Chen, W. Zhang, Q. Tong, K. Conrad, I. Hirschler-Laszkiewicz, M. Bayerl, J. K. Kim, J. Y. Cheung, and B. A. Miller (2013)
Am J Physiol Cell Physiol 304, C548-C560
   Abstract »    Full Text »    PDF »
Depletion of PtdIns(4,5)P2 underlies retinal degeneration in Drosophila trp mutants.
S. Sengupta, T. R. Barber, H. Xia, D. F. Ready, and R. C. Hardie (2013)
J. Cell Sci. 126, 1247-1259
   Abstract »    Full Text »    PDF »
Upregulation of osmo-mechanosensitive TRPV4 channel facilitates chronic hypoxia-induced myogenic tone and pulmonary hypertension.
X.-R. Yang, A. H. Y. Lin, J. M. Hughes, N. A. Flavahan, Y.-N. Cao, W. Liedtke, and J. S. K. Sham (2012)
Am J Physiol Lung Cell Mol Physiol 302, L555-L568
   Abstract »    Full Text »    PDF »
The role of the TRPV6 channel in cancer.
V. Lehen'kyi, M. Raphael, and N. Prevarskaya (2012)
J. Physiol. 590, 1369-1376
   Abstract »    Full Text »    PDF »
Receptor for Activated C Kinase 1 (RACK1) Inhibits Function of Transient Receptor Potential (TRP)-type Channel Pkd2L1 through Physical Interaction.
J. Yang, Q. Wang, W. Zheng, J. Tuli, Q. Li, Y. Wu, S. Hussein, X.-Q. Dai, S. Shafiei, X.-G. Li, et al. (2012)
J. Biol. Chem. 287, 6551-6561
   Abstract »    Full Text »    PDF »
Transient Receptor Potential Canonical Channels Are Required for in Vitro Endothelial Tube Formation.
F. Antigny, N. Girardin, and M. Frieden (2012)
J. Biol. Chem. 287, 5917-5927
   Abstract »    Full Text »    PDF »
Regulation of Activity of Transient Receptor Potential Melastatin 8 (TRPM8) Channel by Its Short Isoforms.
G. Bidaux, B. Beck, A. Zholos, D. Gordienko, L. Lemonnier, M. Flourakis, M. Roudbaraki, A.-S. Borowiec, J. Fernandez, P. Delcourt, et al. (2012)
J. Biol. Chem. 287, 2948-2962
   Abstract »    Full Text »    PDF »
Molecular Architecture and Subunit Organization of TRPA1 Ion Channel Revealed by Electron Microscopy.
T. L. Cvetkov, K. W. Huynh, M. R. Cohen, and V. Y. Moiseenkova-Bell (2011)
J. Biol. Chem. 286, 38168-38176
   Abstract »    Full Text »    PDF »
Translocation of the Drosophila Transient Receptor Potential-like (TRPL) Channel Requires Both the N- and C-terminal Regions Together with Sustained Ca2+ Entry.
D. Richter, B. Katz, T. Oberacker, V. Tzarfaty, G. Belusic, B. Minke, and A. Huber (2011)
J. Biol. Chem. 286, 34234-34243
   Abstract »    Full Text »    PDF »
Ion Channels in Asthma.
M. A. Valverde, G. Cantero-Recasens, A. Garcia-Elias, C. Jung, A. Carreras-Sureda, and R. Vicente (2011)
J. Biol. Chem. 286, 32877-32882
   Abstract »    Full Text »    PDF »
The Transient Receptor Potential (TRP) Channel TRPC3 TRP Domain and AMP-activated Protein Kinase Binding Site Are Required for TRPC3 Activation by Erythropoietin.
I. Hirschler-Laszkiewicz, Q. Tong, K. Waybill, K. Conrad, K. Keefer, W. Zhang, S.-j. Chen, J. Y. Cheung, and B. A. Miller (2011)
J. Biol. Chem. 286, 30636-30646
   Abstract »    Full Text »    PDF »
TRPM7 Is Required within Zebrafish Sensory Neurons for the Activation of Touch-Evoked Escape Behaviors.
S. E. Low, K. Amburgey, E. Horstick, J. Linsley, S. M. Sprague, W. W. Cui, W. Zhou, H. Hirata, L. Saint-Amant, R. I. Hume, et al. (2011)
J. Neurosci. 31, 11633-11644
   Abstract »    Full Text »    PDF »
A Cool Channel in Cold Transduction.
R. Latorre, S. Brauchi, R. Madrid, and P. Orio (2011)
Physiology 26, 273-285
   Abstract »    Full Text »    PDF »
A gain-of-function SNP in TRPC4 cation channel protects against myocardial infarction.
C. Jung, G. G. Gene, M. Tomas, C. Plata, J. Selent, M. Pastor, C. Fandos, M. Senti, G. Lucas, R. Elosua, et al. (2011)
Cardiovasc Res 91, 465-471
   Abstract »    Full Text »    PDF »
Magnesium supplementation, metabolic and inflammatory markers, and global genomic and proteomic profiling: a randomized, double-blind, controlled, crossover trial in overweight individuals.
S. A. Chacko, J. Sul, Y. Song, X. Li, J. LeBlanc, Y. You, A. Butch, and S. Liu (2011)
Am J Clin Nutr 93, 463-473
   Abstract »    Full Text »    PDF »
TRIP Database: a manually curated database of protein-protein interactions for mammalian TRP channels.
Y.-C. Shin, S.-Y. Shin, I. So, D. Kwon, and J.-H. Jeon (2011)
Nucleic Acids Res. 39, D356-D361
   Abstract »    Full Text »    PDF »
Interaction between PKD1L3 and PKD2L1 through their transmembrane domains is required for localization of PKD2L1 at taste pores in taste cells of circumvallate and foliate papillae.
Y. Ishimaru, Y. Katano, K. Yamamoto, M. Akiba, T. Misaka, R. W. Roberts, T. Asakura, H. Matsunami, and K. Abe (2010)
FASEB J 24, 4058-4067
   Abstract »    Full Text »    PDF »
The Role of Transient Receptor Potential Cation Channels in Ca2+ Signaling.
M. Gees, B. Colsoul, and B. Nilius (2010)
Cold Spring Harb Perspect Biol 2, a003962
   Abstract »    Full Text »    PDF »
Loss of Function of Transient Receptor Potential Vanilloid 1 (TRPV1) Genetic Variant Is Associated with Lower Risk of Active Childhood Asthma.
G. Cantero-Recasens, J. R. Gonzalez, C. Fandos, E. Duran-Tauleria, L. A. M. Smit, F. Kauffmann, J. M. Anto, and M. A. Valverde (2010)
J. Biol. Chem. 285, 27532-27535
   Abstract »    Full Text »    PDF »
Role of TRPC3 channels in ATP-induced Ca2+ signaling in principal cells of the inner medullary collecting duct.
M. Goel and W. P. Schilling (2010)
Am J Physiol Renal Physiol 299, F225-F233
   Abstract »    Full Text »    PDF »
The Monoaminergic Modulation of Sensory-Mediated Aversive Responses in Caenorhabditis elegans Requires Glutamatergic/Peptidergic Cotransmission.
G. Harris, H. Mills, R. Wragg, V. Hapiak, M. Castelletto, A. Korchnak, and R. W. Komuniecki (2010)
J. Neurosci. 30, 7889-7899
   Abstract »    Full Text »    PDF »
P2Y2 receptors mediate ATP-induced resensitization of TRPV1 expressed by kidney projecting sensory neurons.
H. Wang, D. H. Wang, and J. J. Galligan (2010)
Am J Physiol Regulatory Integrative Comp Physiol 298, R1634-R1641
   Abstract »    Full Text »    PDF »
Dynamic changes in the TRPA1 selectivity filter lead to progressive but reversible pore dilation.
T. G. Banke, S. R. Chaplan, and A. D. Wickenden (2010)
Am J Physiol Cell Physiol 298, C1457-C1468
   Abstract »    Full Text »    PDF »
Light-dependent Phosphorylation of the Drosophila Transient Receptor Potential Ion Channel.
O. Voolstra, K. Beck, C. Oberegelsbacher, J. Pfannstiel, and A. Huber (2010)
J. Biol. Chem. 285, 14275-14284
   Abstract »    Full Text »    PDF »
The Phospholipid-binding Protein SESTD1 Is a Novel Regulator of the Transient Receptor Potential Channels TRPC4 and TRPC5.
S. Miehe, A. Bieberstein, I. Arnould, O. Ihdene, H. Rutten, and C. Strubing (2010)
J. Biol. Chem. 285, 12426-12434
   Abstract »    Full Text »    PDF »
A 3.5-nm Structure of Rat TRPV4 Cation Channel Revealed by Zernike Phase-contrast Cryoelectron Microscopy.
H. Shigematsu, T. Sokabe, R. Danev, M. Tominaga, and K. Nagayama (2010)
J. Biol. Chem. 285, 11210-11218
   Abstract »    Full Text »    PDF »
Simple 2,4-Diacylphloroglucinols as Classic Transient Receptor Potential-6 Activators--Identification of a Novel Pharmacophore.
K. Leuner, J. H. Heiser, S. Derksen, M. I. Mladenov, C. J. Fehske, R. Schubert, M. Gollasch, G. Schneider, C. Harteneck, S. S. Chatterjee, et al. (2010)
Mol. Pharmacol. 77, 368-377
   Abstract »    Full Text »    PDF »
Modulation of TRPM2 by acidic pH and the underlying mechanisms for pH sensitivity.
J. Du, J. Xie, and L. Yue (2009)
J. Gen. Physiol. 134, 471-488
   Abstract »    Full Text »    PDF »
Activating Mutations of the TRPML1 Channel Revealed by Proline-scanning Mutagenesis.
X.-p. Dong, X. Wang, D. Shen, S. Chen, M. Liu, Y. Wang, E. Mills, X. Cheng, M. Delling, and H. Xu (2009)
J. Biol. Chem. 284, 32040-32052
   Abstract »    Full Text »    PDF »
TRPC6 mutational analysis in a large cohort of patients with focal segmental glomerulosclerosis.
S. Santin, E. Ars, S. Rossetti, E. Salido, I. Silva, R. Garcia-Maset, I. Gimenez, P. Ruiz, S. Mendizabal, J. Luciano Nieto, et al. (2009)
Nephrol. Dial. Transplant. 24, 3089-3096
   Abstract »    Full Text »    PDF »
TRPC Channels Mediate a Muscarinic Receptor-Induced Afterdepolarization in Cerebral Cortex.
H.-D. Yan, C. Villalobos, and R. Andrade (2009)
J. Neurosci. 29, 10038-10046
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 19 May 2009.
E. Oancea and A. M. VanHook (2009)
Science Signaling 2, pc9
   Abstract »    Full Text »
Transient Receptor Potential (TRP) Channels and Taste Sensation.
Y. Ishimaru and H. Matsunami (2009)
Journal of Dental Research 88, 212-218
   Abstract »    PDF »
Divide and Conquer: High Resolution Structural Information on TRP Channel Fragments.
R. Gaudet (2009)
J. Gen. Physiol. 133, 231-237
   Full Text »    PDF »
Membrane Lipid Modulations Remove Divalent Open Channel Block from TRP-Like and NMDA Channels.
M. Parnas, B. Katz, S. Lev, V. Tzarfaty, D. Dadon, A. Gordon-Shaag, H. Metzner, R. Yaka, and B. Minke (2009)
J. Neurosci. 29, 2371-2383
   Abstract »    Full Text »    PDF »
Two amino acid residues determine 2-APB sensitivity of the ion channels TRPV3 and TRPV4.
H. Hu, J. Grandl, M. Bandell, M. Petrus, and A. Patapoutian (2009)
PNAS 106, 1626-1631
   Abstract »    Full Text »    PDF »
Calcium homeostasis in human melanocytes: role of transient receptor potential melastatin 1 (TRPM1) and its regulation by ultraviolet light.
S. Devi, R. Kedlaya, N. Maddodi, K. M. R. Bhat, C. S. Weber, H. Valdivia, and V. Setaluri (2009)
Am J Physiol Cell Physiol 297, C679-C687
   Abstract »    Full Text »    PDF »
Regulation of superoxide production in neutrophils: role of calcium influx.
S. Brechard and E. J. Tschirhart (2008)
J. Leukoc. Biol. 84, 1223-1237
   Abstract »    Full Text »    PDF »
Hydrolysis of Phosphatidylinositol 4,5-Bisphosphate Mediates Calcium-induced Inactivation of TRPV6 Channels.
B. Thyagarajan, V. Lukacs, and T. Rohacs (2008)
J. Biol. Chem. 283, 14980-14987
   Abstract »    Full Text »    PDF »
Functional Requirement for Orai1 in Store-operated TRPC1-STIM1 Channels.
K. T. Cheng, X. Liu, H. L. Ong, and I. S. Ambudkar (2008)
J. Biol. Chem. 283, 12935-12940
   Abstract »    Full Text »    PDF »
IP3 sensitizes TRPV4 channel to the mechano- and osmotransducing messenger 5'-6'-epoxyeicosatrienoic acid.
J. Fernandes, I. M. Lorenzo, Y. N. Andrade, A. Garcia-Elias, S. A. Serra, J. M. Fernandez-Fernandez, and M. A. Valverde (2008)
J. Cell Biol. 181, 143-155
   Abstract »    Full Text »    PDF »
Effect of increasing temperature on TRPV1-mediated responses in isolated rat pulmonary sensory neurons.
D. Ni and L.-Y. Lee (2008)
Am J Physiol Lung Cell Mol Physiol 294, L563-L571
   Abstract »    Full Text »    PDF »
Development and Validation of a Cell-Based High-Throughput Screening Assay for TRPM2 Channel Modulators.
Y. Song, B. Buelow, A.-L. Perraud, and A. M. Scharenberg (2008)
J Biomol Screen 13, 54-61
   Abstract »    PDF »
A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse.
C. Grimm, M. P. Cuajungco, A. F. J. van Aken, M. Schnee, S. Jors, C. J. Kros, A. J. Ricci, and S. Heller (2007)
PNAS 104, 19583-19588
   Abstract »    Full Text »    PDF »
Drosophila TRP channels require a protein with a distinctive motif encoded by the inaF locus.
Y. Cheng and H. A. Nash (2007)
PNAS 104, 17730-17734
   Abstract »    Full Text »    PDF »
Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella.
K. Huang, D. R. Diener, A. Mitchell, G. J. Pazour, G. B. Witman, and J. L. Rosenbaum (2007)
J. Cell Biol. 179, 501-514
   Abstract »    Full Text »    PDF »
Pharmacological Characterization and Molecular Determinants of the Activation of Transient Receptor Potential V2 Channel Orthologs by 2-Aminoethoxydiphenyl Borate.
V. Juvin, A. Penna, J. Chemin, Y.-L. Lin, and F.-A. Rassendren (2007)
Mol. Pharmacol. 72, 1258-1268
   Abstract »    Full Text »    PDF »
Vasopressin-induced membrane trafficking of TRPC3 and AQP2 channels in cells of the rat renal collecting duct.
M. Goel, W. G. Sinkins, C.-D. Zuo, U. Hopfer, and W. P. Schilling (2007)
Am J Physiol Renal Physiol 293, F1476-F1488
   Abstract »    Full Text »    PDF »
Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1( / ) mice.
X. Liu, K. T. Cheng, B. C. Bandyopadhyay, B. Pani, A. Dietrich, B. C. Paria, W. D. Swaim, D. Beech, E. Yildrim, B. B. Singh, et al. (2007)
PNAS 104, 17542-17547
   Abstract »    Full Text »    PDF »
A Quantitative Structure Activity Analysis on the Relative Sensitivity of the Olfactory and the Nasal Trigeminal Chemosensory Systems.
M. H. Abraham, R. Sanchez-Moreno, J. E. Cometto-Muniz, and W. S. Cain (2007)
Chem Senses 32, 711-719
   Abstract »    Full Text »    PDF »
Modulation of TRPs by PIPs.
T. Voets and B. Nilius (2007)
J. Physiol. 582, 939-944
   Abstract »    Full Text »    PDF »
An integrative approach to understanding mechanosensation.
C. C. Poirier and P. A. Iglesias (2007)
Brief Bioinform 8, 258-265
   Abstract »    Full Text »    PDF »
Inspiratory bursts in the preBotzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice.
R. W. Pace, D. D. Mackay, J. L. Feldman, and C. A. Del Negro (2007)
J. Physiol. 582, 113-125
   Abstract »    Full Text »    PDF »
RCAN1 (DSCR1) increases neuronal susceptibility to oxidative stress: a potential pathogenic process in neurodegeneration.
S. Porta, S. A. Serra, M. Huch, M. A. Valverde, F. Llorens, X. Estivill, M. L. Arbones, and E. Marti (2007)
Hum. Mol. Genet. 16, 1039-1050
   Abstract »    Full Text »    PDF »
Open Channel Block by Ca2+ Underlies the Voltage Dependence of Drosophila TRPL Channel.
M. Parnas, B. Katz, and B. Minke (2007)
J. Gen. Physiol. 129, 17-28
   Abstract »    Full Text »    PDF »
Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange.
N. Weissmann, A. Dietrich, B. Fuchs, H. Kalwa, M. Ay, R. Dumitrascu, A. Olschewski, U. Storch, M. Mederos y Schnitzler, H. A. Ghofrani, et al. (2006)
PNAS 103, 19093-19098
   Abstract »    Full Text »    PDF »
A Phosphoinositide Synthase Required for a Sustained Light Response.
T. Wang and C. Montell (2006)
J. Neurosci. 26, 12816-12825
   Abstract »    Full Text »    PDF »
Receptor-induced Activation of Drosophila TRP{gamma} by Polyunsaturated Fatty Acids.
S. Jors, V. Kazanski, A. Foik, D. Krautwurst, and C. Harteneck (2006)
J. Biol. Chem. 281, 29693-29702
   Abstract »    Full Text »    PDF »
Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor.
Y. Ishimaru, H. Inada, M. Kubota, H. Zhuang, M. Tominaga, and H. Matsunami (2006)
PNAS 103, 12569-12574
   Abstract »    Full Text »    PDF »
Lysosomal Localization of TRPML3 Depends on TRPML2 and the Mucolipidosis-associated Protein TRPML1.
K. Venkatachalam, T. Hofmann, and C. Montell (2006)
J. Biol. Chem. 281, 17517-17527
   Abstract »    Full Text »    PDF »
TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion.
K. Togashi, Y. Hara, T. Tominaga, T. Higashi, Y. Konishi, Y. Mori, and M. Tominaga (2006)
EMBO J. 25, 1804-1815
   Abstract »    Full Text »    PDF »
Pharmacological and Electrophysiological Characterization of Store-Operated Currents and Capacitative Ca2+ Entry in Vascular Smooth Muscle Cells.
L. I. Brueggemann, D. R. Markun, K. K. Henderson, L. L. Cribbs, and K. L. Byron (2006)
J. Pharmacol. Exp. Ther. 317, 488-499
   Abstract »    Full Text »    PDF »
Human TRPC6 expressed in HEK 293 cells forms non-selective cation channels with limited Ca2+ permeability.
M. Estacion, W. G. Sinkins, S. W. Jones, M. A. B. Applegate, and W. P. Schilling (2006)
J. Physiol. 572, 359-377
   Abstract »    Full Text »    PDF »
TRPM2 is an ion channel that modulates hematopoietic cell death through activation of caspases and PARP cleavage.
W. Zhang, I. Hirschler-Laszkiewicz, Q. Tong, K. Conrad, S.-C. Sun, L. Penn, D. L. Barber, R. Stahl, D. J. Carey, J. Y. Cheung, et al. (2006)
Am J Physiol Cell Physiol 290, C1146-C1159
   Abstract »    Full Text »    PDF »
Functional role of TRPC proteins in native systems: implications from knockout and knock-down studies.
M. Freichel, R. Vennekens, J. Olausson, S. Stolz, S. E Philipp, P. Weissgerber, and V. Flockerzi (2005)
J. Physiol. 567, 59-66
   Abstract »    Full Text »    PDF »
TRP channels in Drosophila photoreceptor cells.
C. Montell (2005)
J. Physiol. 567, 45-51
   Abstract »    Full Text »    PDF »
TRP Channels in Disease.
B. Nilius, T. Voets, and J. Peters (2005)
Sci. STKE 2005, re8
   Abstract »    Full Text »    PDF »
Molecular Analysis of a Store-operated and 2-Acetyl-sn-glycerol-sensitive Non-selective Cation Channel: HETEROMERIC ASSEMBLY OF TRPC1-TRPC3.
X. Liu, B. C. Bandyopadhyay, B. B. Singh, K. Groschner, and I. S. Ambudkar (2005)
J. Biol. Chem. 280, 21600-21606
   Abstract »    Full Text »    PDF »
TRP Channels.
T. Rohacs (2005)
Sci. STKE 2005, tr14
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882