Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. STKE, 9 August 2005
Vol. 2005, Issue 296, p. re10
[DOI: 10.1126/stke.2962005re10]


14-3-3 Proteins: A Number of Functions for a Numbered Protein

Dave Bridges1 and Greg B. G. Moorhead2*

1Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
2Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4.

Abstract: Many signal transduction events are orchestrated by specific interactions of proteins mediated through discrete phosphopeptide-binding motifs. Although several phosphospecific-binding domains are now known, 14-3-3s were the first proteins recognized to specifically bind a discrete phosphoserine or phosphothreonine motif. The 14-3-3 proteins are a family of ubiquitously expressed, exclusively eukaryotic proteins with an astonishingly large number of binding partners. Consequently, 14-3-3s modulate an enormous and diverse group of cellular processes. The effects of 14-3-3 proteins on their targets can be broadly defined using three categories: (i) conformational change; (ii) physical occlusion of sequence-specific or structural protein features; and (iii) scaffolding. This review will describe the current state of knowledge on 14-3-3 proteins, highlighting several important advances, and will attempt to provide a framework by which 14-3-3 functions can be understood.

*Corresponding author. Fax: 403-289-9311; e-mail: Moorhead{at}

Citation: D. Bridges, G. B. G. Moorhead, 14-3-3 Proteins: A Number of Functions for a Numbered Protein. Sci. STKE 2005, re10 (2005).

Read the Full Text

14-3-3 Binding to Cyclin Y contributes to cyclin Y/CDK14 association.
S. Li, M. Jiang, W. Wang, and J. Chen (2014)
Acta Biochim Biophys Sin 46, 299-304
   Abstract »    Full Text »    PDF »
Activation of NF-{kappa}B signalling by fusicoccin-induced dimerization.
M. Skwarczynska, M. Molzan, and C. Ottmann (2013)
PNAS 110, E377-E386
   Abstract »    Full Text »    PDF »
Internal Amino Acids Promote Gap1 Permease Ubiquitylation via TORC1/Npr1/14-3-3-Dependent Control of the Bul Arrestin-Like Adaptors.
A. Merhi and B. Andre (2012)
Mol. Cell. Biol. 32, 4510-4522
   Abstract »    Full Text »    PDF »
Latitudinal Variation in Protein Expression After Heat Stress in the Salt Marsh Mussel Geukensia demissa.
P. A. Fields, K. M. Cox, and K. R. Karch (2012)
Integr. Comp. Biol. 52, 636-647
   Abstract »    Full Text »    PDF »
The Acid-sensitive, Anesthetic-activated Potassium Leak Channel, KCNK3, Is Regulated by 14-3-3{beta}-dependent, Protein Kinase C (PKC)-mediated Endocytic Trafficking.
L. Gabriel, A. Lvov, D. Orthodoxou, A. R. Rittenhouse, W. R. Kobertz, and H. E. Melikian (2012)
J. Biol. Chem. 287, 32354-32366
   Abstract »    Full Text »    PDF »
Leucine-Rich Repeat Kinase 2 for Beginners: Six Key Questions.
L. R. Kett and W. T. Dauer (2012)
Cold Spring Harb Perspect Med 2, a009407
   Abstract »    Full Text »    PDF »
A molecular switch on an arrestin-like protein relays glucose signaling to transporter endocytosis.
M. Becuwe, N. Vieira, D. Lara, J. Gomes-Rezende, C. Soares-Cunha, M. Casal, R. Haguenauer-Tsapis, O. Vincent, S. Paiva, and S. Leon (2012)
J. Cell Biol. 196, 247-259
   Abstract »    Full Text »    PDF »
Direct Interaction between Scaffolding Proteins RACK1 and 14-3-3{zeta} Regulates Brain-derived Neurotrophic Factor (BDNF) Transcription.
J. Neasta, P. A. Kiely, D.-Y. He, D. R. Adams, R. O'Connor, and D. Ron (2012)
J. Biol. Chem. 287, 322-336
   Abstract »    Full Text »    PDF »
The Cytosolic Kinases STY8, STY17, and STY46 Are Involved in Chloroplast Differentiation in Arabidopsis.
G. Lamberti, I. L. Gugel, J. Meurer, J. Soll, and S. Schwenkert (2011)
Plant Physiology 157, 70-85
   Abstract »    Full Text »    PDF »
Evidence for Network Evolution in an Arabidopsis Interactome Map.
Arabidopsis Interactome Mapping Consortium (2011)
Science 333, 601-607
   Abstract »    Full Text »    PDF »
An Analysis of CAF-1-interacting Proteins Reveals Dynamic and Direct Interactions with the KU Complex and 14-3-3 Proteins.
M. Hoek, M. P. Myers, and B. Stillman (2011)
J. Biol. Chem. 286, 10876-10887
   Abstract »    Full Text »    PDF »
A Robust Protocol to Map Binding Sites of the 14-3-3 Interactome: Cdc25C Requires Phosphorylation of Both S216 and S263 to bind 14-3-3.
P. M. Chan, Y.-W. Ng, and E. Manser (2011)
Mol. Cell. Proteomics 10, M110.005157
   Abstract »    Full Text »    PDF »
14-3-3 Proteins Regulate Protein Kinase A Activity to Modulate Growth Cone Turning Responses.
C. B. Kent, T. Shimada, G. B. Ferraro, B. Ritter, P. T. Yam, P. S. McPherson, F. Charron, T. E. Kennedy, and A. E. Fournier (2010)
J. Neurosci. 30, 14059-14067
   Abstract »    Full Text »    PDF »
Dimerization Is Essential for 14-3-3{zeta} Stability and Function in Vivo.
G. Messaritou, S. Grammenoudi, and E. M. C. Skoulakis (2010)
J. Biol. Chem. 285, 1692-1700
   Abstract »    Full Text »    PDF »
Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms.
S. Rajagopalan, R. S. Sade, F. M. Townsley, and A. R. Fersht (2010)
Nucleic Acids Res. 38, 893-906
   Abstract »    Full Text »    PDF »
Three-way Interaction between 14-3-3 Proteins, the N-terminal Region of Tyrosine Hydroxylase, and Negatively Charged Membranes.
O. Halskau Jr., M. Ying, A. Baumann, R. Kleppe, D. Rodriguez-Larrea, B. Almas, J. Haavik, and A. Martinez (2009)
J. Biol. Chem. 284, 32758-32769
   Abstract »    Full Text »    PDF »
Global Analysis of Cdk1 Substrate Phosphorylation Sites Provides Insights into Evolution.
L. J. Holt, B. B. Tuch, J. Villen, A. D. Johnson, S. P. Gygi, and D. O. Morgan (2009)
Science 325, 1682-1686
   Abstract »    Full Text »    PDF »
Recognition of an intra-chain tandem 14-3-3 binding site within PKC{varepsilon}.
B. Kostelecky, A. T. Saurin, A. Purkiss, P. J. Parker, and N. Q. McDonald (2009)
EMBO Rep. 10, 983-989
   Abstract »    Full Text »    PDF »
Structure and Function of the Phosphothreonine-Specific FHA Domain.
A. Mahajan, C. Yuan, H. Lee, E. S.-W. Chen, P.-Y. Wu, and M.-D. Tsai (2008)
Science Signaling 1, re12
   Abstract »    Full Text »    PDF »
Hypoxia regulates TSC1/2 mTOR signaling and tumor suppression through REDD1-mediated 14 3 3 shuttling.
M. P. DeYoung, P. Horak, A. Sofer, D. Sgroi, and L. W. Ellisen (2008)
Genes & Dev. 22, 239-251
   Abstract »    Full Text »    PDF »
Regulation of Nox1 Activity via Protein Kinase A-mediated Phosphorylation of NoxA1 and 14-3-3 Binding.
J.-S. Kim, B. A. Diebold, B. M. Babior, U. G. Knaus, and G. M. Bokoch (2007)
J. Biol. Chem. 282, 34787-34800
   Abstract »    Full Text »    PDF »
In Vivo Functional Specificity and Homeostasis of Drosophila 14-3-3 Proteins.
S. F. Acevedo, K. K. Tsigkari, S. Grammenoudi, and E. M. C. Skoulakis (2007)
Genetics 177, 239-253
   Abstract »    Full Text »    PDF »
Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice.
M.-Y. Bai, L.-Y. Zhang, S. S. Gampala, S.-W. Zhu, W.-Y. Song, K. Chong, and Z.-Y. Wang (2007)
PNAS 104, 13839-13844
   Abstract »    Full Text »    PDF »
Functional specialization of beta-arrestin interactions revealed by proteomic analysis.
K. Xiao, D. B. McClatchy, A. K. Shukla, Y. Zhao, M. Chen, S. K. Shenoy, J. R. Yates III, and R. J. Lefkowitz (2007)
PNAS 104, 12011-12016
   Abstract »    Full Text »    PDF »
14-3-3{sigma} is a p37 AUF1-binding protein that facilitates AUF1 transport and AU-rich mRNA decay.
C. He and R. Schneider (2006)
EMBO J. 25, 3823-3831
   Abstract »    Full Text »    PDF »
A 38-Amino-Acid Sequence Encompassing the Arm Domain of the Cucumber Necrosis Virus Coat Protein Functions as a Chloroplast Transit Peptide in Infected Plants.
Y. Xiang, K. Kakani, R. Reade, E. Hui, and D. Rochon (2006)
J. Virol. 80, 7952-7964
   Abstract »    Full Text »    PDF »
14-3-3 Is a Regulator of the Cardiac Voltage-Gated Sodium Channel Nav1.5.
M. Allouis, F. Le Bouffant, R. Wilders, D. Peroz, J.-J. Schott, J. Noireaud, H. Le Marec, J. Merot, D. Escande, and I. Baro (2006)
Circ. Res. 98, 1538-1546
   Abstract »    Full Text »    PDF »
Posttranslational Regulation of Tristetraprolin Subcellular Localization and Protein Stability by p38 Mitogen-Activated Protein Kinase and Extracellular Signal-Regulated Kinase Pathways.
M. Brook, C. R. Tchen, T. Santalucia, J. McIlrath, J. S. C. Arthur, J. Saklatvala, and A. R. Clark (2006)
Mol. Cell. Biol. 26, 2408-2418
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882