Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. STKE, 1 November 2005
Vol. 2005, Issue 308, p. cm10
[DOI: 10.1126/stke.2005/308/cm10]

CONNECTIONS MAP OVERVIEWS

Seven-Transmembrane Receptor Signaling Through β-Arrestin

Sudha K. Shenoy2 and Robert J. Lefkowitz1,2*

1Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
2Howard Hughes Medical Institute, Durham, NC 27710, USA.

stkecm;CMP_15654

Abstract: Cell surface receptors are important communicators of external stimuli to the cell interior where they lead to initiation of various signaling pathways and cellular responses. The largest receptor family is the seven-transmembrane receptor (7TMR) family, with approximately 1000 coding genes in the human genome. When 7TMRs are stimulated with agonists, they activate heterotrimeric guanine nucleotide-binding proteins (G proteins), leading to the production of signaling second messengers, such as adenosine 3',5'-monophosphate, inositol phosphates, and others. Activated receptors are rapidly phosphorylated on serine and threonine residues by specialized enzymes called G protein–coupled receptor kinases. Phosphorylated receptors bind the multifunctional adaptor proteins β-arrestin1 and β-arrestin2 with high affinity. β-arrestin binding blocks further G protein coupling, leading to "desensitization" of G protein–dependent signaling pathways. For several years, this was considered the sole function of β-arrestins. However, novel functions of β-arrestins have been discovered. β-arrestins are now designated as important adaptors that link receptors to the clathrin-dependent pathway of internalization. β-arrestins bind and direct the activity of several nonreceptor tyrosine kinases in response to 7TMR stimulation. β-arrestins also bind and scaffold members of such signaling cascades as the mitogen-activated protein kinases (MAPKs). β-arrestins are crucial components in 7TMR signaling leading to cellular responses that include cell survival and chemotaxis. β-arrestins act as endocytic adaptors and signal mediators not only for the 7TMRs, but also for several receptor tyrosine kinases.

*Corresponding author. E-mail, lefko001{at}receptor-biol.duke.edu

Citation: S. K. Shenoy, R. J. Lefkowitz, Seven-Transmembrane Receptor Signaling Through β-Arrestin. Sci. STKE 2005, cm10 (2005).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations.
D. Wootten, J. Simms, L. J. Miller, A. Christopoulos, and P. M. Sexton (2013)
PNAS 110, 5211-5216
   Abstract »    Full Text »    PDF »
Interruption of the Ionic Lock in the Bradykinin B2 Receptor Results in Constitutive Internalization and Turns Several Antagonists into Strong Agonists.
J. Leschner, G. Wennerberg, J. Feierler, M. Bermudez, B. Welte, I. Kalatskaya, G. Wolber, and A. Faussner (2013)
J. Pharmacol. Exp. Ther. 344, 85-95
   Abstract »    Full Text »    PDF »
Dynamics of the G Protein-coupled Vasopressin V2 Receptor Signaling Network Revealed by Quantitative Phosphoproteomics.
J. D. Hoffert, T. Pisitkun, F. Saeed, J. H. Song, C.-L. Chou, and M. A. Knepper (2012)
Mol. Cell. Proteomics 11, M111.014613
   Abstract »    Full Text »    PDF »
A Novel Form of Low-Frequency Hippocampal Mossy Fiber Plasticity Induced by Bimodal mGlu1 Receptor Signaling.
S. F. Frausto, K. Ito, W. Marszalec, and G. T. Swanson (2011)
J. Neurosci. 31, 16897-16906
   Abstract »    Full Text »    PDF »
Distinct Phosphorylation Sites on the {beta}2-Adrenergic Receptor Establish a Barcode That Encodes Differential Functions of {beta}-Arrestin.
K. N. Nobles, K. Xiao, S. Ahn, A. K. Shukla, C. M. Lam, S. Rajagopal, R. T. Strachan, T.-Y. Huang, E. A. Bressler, M. R. Hara, et al. (2011)
Science Signaling 4, ra51
   Abstract »    Full Text »    PDF »
Phosphorylation Barcoding as a Mechanism of Directing GPCR Signaling.
S. B. Liggett (2011)
Science Signaling 4, pe36
   Abstract »    Full Text »    PDF »
{beta}-Arrestin 1 Inhibits the GTPase-Activating Protein Function of ARHGAP21, Promoting Activation of RhoA following Angiotensin II Type 1A Receptor Stimulation.
D. F. Anthony, Y. Y. Sin, S. Vadrevu, N. Advant, J. P. Day, A. M. Byrne, M. J. Lynch, G. Milligan, M. D. Houslay, and G. S. Baillie (2011)
Mol. Cell. Biol. 31, 1066-1075
   Abstract »    Full Text »    PDF »
The Physiology, Signaling, and Pharmacology of Dopamine Receptors.
J.-M. Beaulieu and R. R. Gainetdinov (2011)
Pharmacol. Rev. 63, 182-217
   Abstract »    Full Text »    PDF »
Nedd4-1 and {beta}-Arrestin-1 Are Key Regulators of Na+/H+ Exchanger 1 Ubiquitylation, Endocytosis, and Function.
A. Simonin and D. Fuster (2010)
J. Biol. Chem. 285, 38293-38303
   Abstract »    Full Text »    PDF »
Sensory Neuron-Specific Mas-Related Gene-X1 Receptors Resist Agonist-Promoted Endocytosis.
H. J. Solinski, I. Boekhoff, M. Bouvier, T. Gudermann, and A. Breit (2010)
Mol. Pharmacol. 78, 249-259
   Abstract »    Full Text »    PDF »
Beyond Desensitization: Physiological Relevance of Arrestin-Dependent Signaling.
L. M. Luttrell, D. Gesty-Palmer, and D. R. Sibley (2010)
Pharmacol. Rev. 62, 305-330
   Abstract »    Full Text »    PDF »
Tyrosine Phosphorylation of Kir3 following {kappa}-Opioid Receptor Activation of p38 MAPK Causes Heterologous Desensitization.
C. C. Clayton, M. Xu, and C. Chavkin (2009)
J. Biol. Chem. 284, 31872-31881
   Abstract »    Full Text »    PDF »
A {beta}-Arrestin-Biased Agonist of the Parathyroid Hormone Receptor (PTH1R) Promotes Bone Formation Independent of G Protein Activation.
D. Gesty-Palmer, P. Flannery, L. Yuan, L. Corsino, R. Spurney, R. J. Lefkowitz, and L. M. Luttrell (2009)
Science Translational Medicine 1, 1ra1
   Abstract »    Full Text »    PDF »
{beta}-Arrestin 2 is required for lysophosphatidic acid-induced NF-{kappa}B activation.
J. Sun and X. Lin (2008)
PNAS 105, 17085-17090
   Abstract »    Full Text »    PDF »
Dynamics of Somatostatin Type 2A Receptor Cargoes in Living Hippocampal Neurons.
B. Lelouvier, G. Tamagno, A. M. Kaindl, A. Roland, V. Lelievre, V. Le Verche, C. Loudes, P. Gressens, A. Faivre-Baumann, Z. Lenkei, et al. (2008)
J. Neurosci. 28, 4336-4349
   Abstract »    Full Text »    PDF »
Mechanisms Underlying Acute Protection From Cardiac Ischemia-Reperfusion Injury.
E. Murphy and C. Steenbergen (2008)
Physiol Rev 88, 581-609
   Abstract »    Full Text »    PDF »
Rapid xenograft tumor progression in beta-arrestin1 transgenic mice due to enhanced tumor angiogenesis.
L. Zou, R. Yang, J. Chai, and G. Pei (2008)
FASEB J 22, 355-364
   Abstract »    Full Text »    PDF »
A universal technology for monitoring G-protein-coupled receptor activation in vitro and noninvasively in live animals.
G. von Degenfeld, T. S. Wehrman, M. M. Hammer, and H. M. Blau (2007)
FASEB J 21, 3819-3826
   Abstract »    Full Text »    PDF »
{beta}-arrestin 2 oligomerization controls the Mdm2-dependent inhibition of p53.
C. Boularan, M. G. H. Scott, K. Bourougaa, M. Bellal, E. Esteve, A. Thuret, A. Benmerah, M. Tramier, M. Coppey-Moisan, C. Labbe-Jullie, et al. (2007)
PNAS 104, 18061-18066
   Abstract »    Full Text »    PDF »
beta-Arrestin2-Mediated Internalization of Mammalian Odorant Receptors.
A. Mashukova, M. Spehr, H. Hatt, and E. M. Neuhaus (2006)
J. Neurosci. 26, 9902-9912
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882