Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. STKE, 22 August 2006
Vol. 2006, Issue 349, p. re8
[DOI: 10.1126/stke.3492006re8]

Localizing NADPH Oxidase–Derived ROS

Masuko Ushio-Fukai*

Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA.

Abstract: Reactive oxygen species (ROS) function as signaling molecules to mediate various biological responses, including cell migration, growth, and gene expression. ROS are diffusible and short-lived molecules. Thus, localizing the ROS signal at the specific subcellular compartment is essential for activating redox signaling events after receptor activation. NADPH (nicotinamide adenine dinucleotide phosphate) oxidase is one of the major sources of ROS in vasculature; it consists of a catalytic subunit (Nox1, Nox2, Nox3, Nox4, or Nox5), p22phox, p47phox, p67phox, and the small guanosine triphosphatase Rac1. Targeting of NADPH oxidase to focal complexes in lamellipodia and membrane ruffles through the interaction of p47phox with the scaffold proteins TRAF4 and WAVE1 provides a mechanism for achieving localized ROS production, which is required for directed cell migration. ROS are believed to inactivate protein tyrosine phosphatases, which concentrate in specific subcellular compartments, thereby establishing a positive feedback system that activates redox signaling pathways to promote cell movement. Additionally, ROS production may be localized through interactions of NADPH oxidase with signaling platforms associated with lipid rafts and caveolae, as well as with endosomes. There is also evidence that NADPH oxidase is found in the nucleus, indicating its involvement in redox-responsive gene expression. This review focuses on targeting of NADPH oxidase to discrete subcellular compartments as a mechanism of localizing ROS and activation of downstream redox signaling events that mediate various cell functions.

*Corresponding author. E-mail: mfukai{at}uic.edu

Citation: M. Ushio-Fukai, Localizing NADPH Oxidase–Derived ROS. Sci. STKE 2006, re8 (2006).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death.
N. A. Graham, M. Tahmasian, B. Kohli, E. Komisopoulou, M. Zhu, I. Vivanco, M. A. Teitell, H. Wu, A. Ribas, R. S. Lo, et al. (2014)
Mol Syst Biol 8, 589
   Abstract »    Full Text »    PDF »
Regulation of Circadian Clocks by Redox Homeostasis.
A. Stangherlin and A. B. Reddy (2013)
J. Biol. Chem. 288, 26505-26511
   Abstract »    Full Text »    PDF »
Cyclophilin A Is Required for Angiotensin II-Induced p47phox Translocation to Caveolae in Vascular Smooth Muscle Cells.
N. N. Soe, M. Sowden, P. Baskaran, E. M. Smolock, Y. Kim, P. Nigro, and B. C. Berk (2013)
Arterioscler Thromb Vasc Biol 33, 2147-2153
   Abstract »    Full Text »    PDF »
Release of cellular tension signals self-restorative ventral lamellipodia to heal barrier micro-wounds.
R. Martinelli, M. Kamei, P. T. Sage, R. Massol, L. Varghese, T. Sciuto, M. Toporsian, A. M. Dvorak, T. Kirchhausen, T. A. Springer, et al. (2013)
J. Cell Biol. 201, 449-465
   Abstract »    Full Text »    PDF »
Novel Role for Non-muscle Myosin Light Chain Kinase (MLCK) in Hyperoxia-induced Recruitment of Cytoskeletal Proteins, NADPH Oxidase Activation, and Reactive Oxygen Species Generation in Lung Endothelium.
P. V. Usatyuk, P. A. Singleton, S. Pendyala, S. K. Kalari, D. He, I. A. Gorshkova, S. M. Camp, J. Moitra, S. M. Dudek, J. G. N. Garcia, et al. (2012)
J. Biol. Chem. 287, 9360-9375
   Abstract »    Full Text »    PDF »
Novel role of p66Shc in ROS-dependent VEGF signaling and angiogenesis in endothelial cells.
J. Oshikawa, S.-J. Kim, E. Furuta, C. Caliceti, G.-F. Chen, R. D. McKinney, F. Kuhr, I. Levitan, T. Fukai, and M. Ushio-Fukai (2012)
Am J Physiol Heart Circ Physiol 302, H724-H732
   Abstract »    Full Text »    PDF »
Role of Reactive Oxygen Species in the Regulation of Arabidopsis Seed Dormancy.
J. Leymarie, G. Vitkauskaite, H. H. Hoang, E. Gendreau, V. Chazoule, P. Meimoun, F. Corbineau, H. El-Maarouf-Bouteau, and C. Bailly (2012)
Plant Cell Physiol. 53, 96-106
   Abstract »    Full Text »    PDF »
Role of hyaluronan and hyaluronan-binding proteins in lung pathobiology.
F. E. Lennon and P. A. Singleton (2011)
Am J Physiol Lung Cell Mol Physiol 301, L137-L147
   Abstract »    Full Text »    PDF »
Nitric oxide and redox mechanisms in the immune response.
D. A. Wink, H. B. Hines, R. Y. S. Cheng, C. H. Switzer, W. Flores-Santana, M. P. Vitek, L. A. Ridnour, and C. A. Colton (2011)
J. Leukoc. Biol. 89, 873-891
   Abstract »    Full Text »    PDF »
Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases.
P. A. Swanson II, A. Kumar, S. Samarin, M. Vijay-Kumar, K. Kundu, N. Murthy, J. Hansen, A. Nusrat, and A. S. Neish (2011)
PNAS 108, 8803-8808
   Abstract »    Full Text »    PDF »
Redox homeostasis, oxidative stress and disuse muscle atrophy.
M. A. Pellegrino, J.-F. Desaphy, L. Brocca, S. Pierno, D. C. Camerino, and R. Bottinelli (2011)
J. Physiol. 589, 2147-2160
   Abstract »    Full Text »    PDF »
ABA Controls H2O2 Accumulation Through the Induction of OsCATB in Rice Leaves Under Water Stress.
N. Ye, G. Zhu, Y. Liu, Y. Li, and J. Zhang (2011)
Plant Cell Physiol. 52, 689-698
   Abstract »    Full Text »    PDF »
NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart.
J. Kuroda, T. Ago, S. Matsushima, P. Zhai, M. D. Schneider, and J. Sadoshima (2010)
PNAS 107, 15565-15570
   Abstract »    Full Text »    PDF »
Dynamin 2 and c-Abl Are Novel Regulators of Hyperoxia-mediated NADPH Oxidase Activation and Reactive Oxygen Species Production in Caveolin-enriched Microdomains of the Endothelium.
P. A. Singleton, S. Pendyala, I. A. Gorshkova, N. Mambetsariev, J. Moitra, J. G. N. Garcia, and V. Natarajan (2009)
J. Biol. Chem. 284, 34964-34975
   Abstract »    Full Text »    PDF »
Novel p47phox-Related Organizers Regulate Localized NADPH Oxidase 1 (Nox1) Activity.
D. Gianni, B. Diaz, N. Taulet, B. Fowler, S. A. Courtneidge, and G. M. Bokoch (2009)
Science Signaling 2, ra54
   Abstract »    Full Text »    PDF »
Subcellular localization of Nox4 and regulation in diabetes.
K. Block, Y. Gorin, and H. E. Abboud (2009)
PNAS 106, 14385-14390
   Abstract »    Full Text »    PDF »
NADPH Oxidase 1 Controls the Persistence of Directed Cell Migration by a Rho-Dependent Switch of {alpha}2/{alpha}3 Integrins.
A. Sadok, A. Pierres, L. Dahan, C. Prevot, M. Lehmann, and H. Kovacic (2009)
Mol. Cell. Biol. 29, 3915-3928
   Abstract »    Full Text »    PDF »
Depleting Rac1 in mouse rod photoreceptors protects them from photo-oxidative stress without affecting their structure or function.
M. Haruta, R. A. Bush, S. Kjellstrom, C. Vijayasarathy, Y. Zeng, Y.-Z. Le, and P. A. Sieving (2009)
PNAS 106, 9397-9402
   Abstract »    Full Text »    PDF »
A Novel Protein Kinase A-independent, {beta}-Arrestin-1-dependent Signaling Pathway for p38 Mitogen-activated Protein Kinase Activation by {beta}2-Adrenergic Receptors.
K. Gong, Z. Li, M. Xu, J. Du, Z. Lv, and Y. Zhang (2008)
J. Biol. Chem. 283, 29028-29036
   Abstract »    Full Text »    PDF »
Evidence for a Superoxide Permeability Pathway in Endosomal Membranes.
D. R. Mumbengegwi, Q. Li, C. Li, C. E. Bear, and J. F. Engelhardt (2008)
Mol. Cell. Biol. 28, 3700-3712
   Abstract »    Full Text »    PDF »
G Protein-Coupled Receptor Ca2+-Linked Mitochondrial Reactive Oxygen Species Are Essential for Endothelial/Leukocyte Adherence.
B. J. Hawkins, L. A. Solt, I. Chowdhury, A. S. Kazi, M. R. Abid, W. C. Aird, M. J. May, J. K. Foskett, and M. Madesh (2007)
Mol. Cell. Biol. 27, 7582-7593
   Abstract »    Full Text »    PDF »
Cytotoxicity of TNF{alpha} is regulated by integrin-mediated matrix signaling.
C.-C. Chen, J. L. Young, R. I. Monzon, N. Chen, V. Todorovic, and L. F. Lau (2007)
EMBO J. 26, 1257-1267
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882