Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. STKE, 24 July 2007
Vol. 2007, Issue 396, p. pe40
[DOI: 10.1126/stke.3962007pe40]


Chemotaxis: Navigating by Multiple Signaling Pathways

Peter J. M. Van Haastert* and Douwe M. Veltman

Department of Biology, University of Groningen, Kerklaan 30, 9751 NN Haren, Netherlands.

Abstract: During chemotaxis, phosphatidylinositol 3,4,5-trisphosphate (PIP3) accumulates at the leading edge of a eukaryotic cell, where it induces the formation of pseudopodia. PIP3 has been suggested to be the compass of cells navigating in gradients of signaling molecules. Recent observations suggest that chemotaxis is more complex than previously anticipated. Complete inhibition of all PIP3 signaling has little effect, and alternative pathways have been identified. In addition, selective pseudopod growth and retraction are more important in directing cell movement than is the place where new pseudopodia are formed.

*Corresponding author. Telephone, 31-503-634-172; fax, 31-503-634-165; e-mail, P.J.M.van.haastert{at}

Citation: P. J. M. Van Haastert, D. M. Veltman, Chemotaxis: Navigating by Multiple Signaling Pathways. Sci. STKE 2007, pe40 (2007).

Read the Full Text

Different CHD chromatin remodelers are required for expression of distinct gene sets and specific stages during development of Dictyostelium discoideum.
J. L. Platt, B. J. Rogers, K. C. Rogers, A. J. Harwood, and A. R. Kimmel (2013)
Development 140, 4926-4936
   Abstract »    Full Text »    PDF »
Blurred line between chemotactic chase and phagocytic consumption: an immunophysical single-cell perspective.
V. Heinrich and C.-Y. Lee (2011)
J. Cell Sci. 124, 3041-3051
   Abstract »    Full Text »    PDF »
Initial Cell Type Choice in Dictyostelium.
W. Jang and R. H. Gomer (2011)
Eukaryot. Cell 10, 150-155
   Abstract »    Full Text »    PDF »
Ca2+ chemotaxis in Dictyostelium discoideum.
A. Scherer, S. Kuhl, D. Wessels, D. F. Lusche, B. Raisley, and D. R. Soll (2010)
J. Cell Sci. 123, 3756-3767
   Abstract »    Full Text »    PDF »
Dictyostelium Finds New Roles to Model.
J. G. Williams (2010)
Genetics 185, 717-726
   Abstract »    Full Text »    PDF »
Involvement of the Cytoskeleton in Controlling Leading-Edge Function during Chemotaxis.
S. Lee, Z. Shen, D. N. Robinson, S. Briggs, and R. A. Firtel (2010)
Mol. Biol. Cell 21, 1810-1824
   Abstract »    Full Text »    PDF »
Signal-activated phospholipase regulation of leukocyte chemotaxis.
M. K. Cathcart (2009)
J. Lipid Res. 50, S231-S236
   Abstract »    Full Text »    PDF »
Combining experiments and modelling to understand size regulation in Dictyostelium discoideum.
W. Jang and R. H Gomer (2008)
J R Soc Interface 5, S49-S58
   Abstract »    Full Text »    PDF »
The regulation of cell motility and chemotaxis by phospholipid signaling.
V. Kolsch, P. G. Charest, and R. A. Firtel (2008)
J. Cell Sci. 121, 551-559
   Abstract »    Full Text »    PDF »
iPLA2{beta}: front and center in human monocyte chemotaxis to MCP-1.
R. S. Mishra, K. A. Carnevale, and M. K. Cathcart (2008)
J. Exp. Med. 205, 347-359
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882