Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. STKE, 23 October 2007
Vol. 2007, Issue 409, p. tw387
[DOI: 10.1126/stke.4092007tw387]

EDITORS' CHOICE

Metabolism Targeting Acetyl-CoA Carboxylase to Stay Lean

L. Bryan Ray

Science, Science’s STKE, AAAS, Washington, DC 20005, USA

Acetyl-CoA carboxylase (ACC) regulates synthesis and oxidation of fatty acids, and mice lacking the ACC2 isoform are leaner than wild-type animals. Choi et al. further characterized whole-body energy metabolism and insulin sensitivity of Acc2–/– mice and obtained results supporting the possibility of ACC2 inhibitors as agents to treat obesity and type 2 diabetes. By monitoring activity of the animals, food consumption, and energy expenditure, the authors showed that Acc2–/– animals ate more food than did wild-type animals but were still leaner than the control animals. The Acc2–/– animals were also resistant to obesity brought on by eating a diet high in fats. These effects could be explained by the increase in energy expenditure that was observed in the knockout animals. Although oxidation of fats and of carbohydrates have been thought to be mutually exclusive (thus providing an explanation for insulin resistance observed in animals with excess fatty acids), Choi et al. found that oxidation of both fats and carbohydrates was increased in the Acc2–/– animals. Insulin responsiveness was also enhanced in the knockout animals. Resistance to insulin that occurs with fat accumulation is thought to result from accumulation of diacylglycerol in muscle and liver and consequent activation of protein kinase C (PKC) {theta} and PKC{epsilon} in muscle and liver, respectively. In the Acc2–/– mice, enhanced sensitivity to insulin was associated with decreased activity of the PKC enzymes. ACC2 is not a particularly easy target for development of therapeutics in that the ACC1 isoform is required for viability during embryogenesis. Nevertheless, the authors propose, the properties of the Acc2–/– animals show that patients with common diseases like diabetes and obesity could be helped by continued efforts to develop a specific inhibitor for ACC2.

C. S. Choi, D. B. Savage, L. Abu-Elheiga, Z.-X. Liu, S. Kim, A. Kulkarni, A. Distefano, Y.-J. Hwang, R. M. Reznick, R. Codella, D. Zhang, G. W. Cline, S. J. Wakil, G. I. Shulman, Continuous fat oxidation in acetyl-CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity. Proc. Natl. Acad. Sci. U.S.A. 104, 16480-16485 (2007). [Abstract] [Full Text]

Citation: L. B. Ray, Targeting Acetyl-CoA Carboxylase to Stay Lean. Sci. STKE 2007, tw387 (2007).


To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882