Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 19 January 2010
Vol. 3, Issue 105, p. cm1
[DOI: 10.1126/scisignal.3105cm1]

CONNECTIONS MAP OVERVIEWS

Interleukin-1 (IL-1) Pathway

Axel Weber1, Peter Wasiliew1, and Michael Kracht1*

1 Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany.

Abstract: The interleukin-1 (IL-1) family of cytokines comprises 11 proteins (IL-1F1 to IL-1F11) encoded by 11 distinct genes in humans and mice. IL-1–type cytokines are major mediators of innate immune reactions, and blockade of the founding members IL-1{alpha} or IL-1β by the interleukin-1 receptor antagonist (IL-1RA) has demonstrated a central role of IL-1 in a number of human autoinflammatory diseases. IL-1{alpha} or IL-1β rapidly increase messenger RNA expression of hundreds of genes in multiple different cell types. The potent proinflammatory activities of IL-1{alpha} and IL-1β are restricted at three major levels: (i) synthesis and release, (ii) membrane receptors, and (iii) intracellular signal transduction. This pathway summarizes extracellular and intracellular signaling of IL-1{alpha} or IL-1β, including positive- and negative-feedback mechanisms that amplify or terminate the IL-1 response. In response to ligand binding of the receptor, a complex sequence of combinatorial phosphorylation and ubiquitination events results in activation of nuclear factor {kappa}B signaling and the JNK and p38 mitogen-activated protein kinase pathways, which, cooperatively, induce the expression of canonical IL-1 target genes (such as IL-6, IL-8, MCP-1, COX-2, I{kappa}B{alpha}, IL-1{alpha}, IL-1β, MKP-1) by transcriptional and posttranscriptional mechanisms. Of note, most intracellular components that participate in the cellular response to IL-1 also mediate responses to other cytokines (IL-18 and IL-33), Toll-like-receptors (TLRs), and many forms of cytotoxic stresses.

* Corresponding author. E-mail, michael.kracht{at}pharma.med.uni-giessen.de

Citation: A. Weber, P. Wasiliew, M. Kracht, Interleukin-1 (IL-1) Pathway. Sci. Signal. 3, cm1 (2010).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Lipopolysaccharide Decreases Single Immunoglobulin Interleukin-1 Receptor-related Molecule (SIGIRR) Expression by Suppressing Specificity Protein 1 (Sp1) via the Toll-like Receptor 4 (TLR4)-p38 Pathway in Monocytes and Neutrophils.
K. Ueno-Shuto, K. Kato, Y. Tasaki, M. Sato, K. Sato, Y. Uchida, H. Sakai, T. Ono, M. A. Suico, K. Mitsutake, et al. (2014)
J. Biol. Chem. 289, 18097-18109
   Abstract »    Full Text »    PDF »
Hepatic Overexpression of Idol Increases Circulating Protein Convertase Subtilisin/Kexin Type 9 in Mice and Hamsters via Dual Mechanisms: Sterol Regulatory Element-Binding Protein 2 and Low-Density Lipoprotein Receptor-Dependent Pathways.
M. Sasaki, Y. Terao, M. Ayaori, H. Uto-Kondo, M. Iizuka, M. Yogo, K. Hagisawa, S. Takiguchi, E. Yakushiji, K. Nakaya, et al. (2014)
Arterioscler Thromb Vasc Biol 34, 1171-1178
   Abstract »    Full Text »    PDF »
Interleukin-1 Receptor but Not Toll-Like Receptor 2 Is Essential for MyD88-Dependent Th17 Immunity to Coccidioides Infection.
C.-Y. Hung, M. d. P. Jimenez-Alzate, A. Gonzalez, M. Wuthrich, B. S. Klein, and G. T. Cole (2014)
Infect. Immun. 82, 2106-2114
   Abstract »    Full Text »    PDF »
Context-dependent Cooperation between Nuclear Factor {kappa}B (NF-{kappa}B) and the Glucocorticoid Receptor at a TNFAIP3 Intronic Enhancer: A MECHANISM TO MAINTAIN NEGATIVE FEEDBACK CONTROL OF INFLAMMATION.
M. O. Altonsy, S. K. Sasse, T. L. Phang, and A. N. Gerber (2014)
J. Biol. Chem. 289, 8231-8239
   Abstract »    Full Text »    PDF »
Hepcidin Induction by Pathogens and Pathogen-Derived Molecules Is Strongly Dependent on Interleukin-6.
R. Rodriguez, C.-L. Jung, V. Gabayan, J. C. Deng, T. Ganz, E. Nemeth, Y. Bulut, and C. R. Roy (2014)
Infect. Immun. 82, 745-752
   Abstract »    Full Text »    PDF »
Rikkunshito ameliorates bleomycin-induced acute lung injury in a ghrelin-independent manner.
H. Tsubouchi, S. Yanagi, A. Miura, S. Iizuka, S. Mogami, C. Yamada, T. Hattori, and M. Nakazato (2014)
Am J Physiol Lung Cell Mol Physiol 306, L233-L245
   Abstract »    Full Text »    PDF »
TRIM38 inhibits TNF{alpha}- and IL-1{beta}-triggered NF-{kappa}B activation by mediating lysosome-dependent degradation of TAB2/3.
M.-M. Hu, Q. Yang, J. Zhang, S.-M. Liu, Y. Zhang, H. Lin, Z.-F. Huang, Y.-Y. Wang, X.-D. Zhang, B. Zhong, et al. (2014)
PNAS 111, 1509-1514
   Abstract »    Full Text »    PDF »
Detailed Mechanistic Analysis of Gevokizumab, an Allosteric Anti-IL-1{beta} Antibody with Differential Receptor-Modulating Properties.
H. Issafras, J. A. Corbin, I. D. Goldfine, and M. K. Roell (2014)
J. Pharmacol. Exp. Ther. 348, 202-215
   Abstract »    Full Text »    PDF »
Regulation of IL-1{beta}-induced NF-{kappa}B by hydroxylases links key hypoxic and inflammatory signaling pathways.
C. C. Scholz, M. A. S. Cavadas, M. M. Tambuwala, E. Hams, J. Rodriguez, A. v. Kriegsheim, P. Cotter, U. Bruning, P. G. Fallon, A. Cheong, et al. (2013)
PNAS 110, 18490-18495
   Abstract »    Full Text »    PDF »
NLRP3 deletion protects from hyperoxia-induced acute lung injury.
J. Fukumoto, I. Fukumoto, P. T. Parthasarathy, R. Cox, B. Huynh, G. K. Ramanathan, R. B. Venugopal, D. S. Allen-Gipson, R. F. Lockey, and N. Kolliputi (2013)
Am J Physiol Cell Physiol 305, C182-C189
   Abstract »    Full Text »    PDF »
Rabies Virus Is Recognized by the NLRP3 Inflammasome and Activates Interleukin-1{beta} Release in Murine Dendritic Cells.
T. M. Lawrence, A. W. Hudacek, M. R. de Zoete, R. A. Flavell, and M. J. Schnell (2013)
J. Virol. 87, 5848-5857
   Abstract »    Full Text »    PDF »
Activation of a PGC-1-related Coactivator (PRC)-dependent Inflammatory Stress Program Linked to Apoptosis and Premature Senescence.
N. Gleyzer and R. C. Scarpulla (2013)
J. Biol. Chem. 288, 8004-8015
   Abstract »    Full Text »    PDF »
IL-1 enhances expansion, effector function, tissue localization, and memory response of antigen-specific CD8 T cells.
S. Z. Ben-Sasson, A. Hogg, J. Hu-Li, P. Wingfield, X. Chen, M. Crank, S. Caucheteux, M. Ratner-Hurevich, J. A. Berzofsky, R. Nir-Paz, et al. (2013)
J. Exp. Med. 210, 491-502
   Abstract »    Full Text »    PDF »
Lysine 63-linked Ubiquitination Modulates Mixed Lineage Kinase-3 Interaction with JIP1 Scaffold Protein in Cytokine-induced Pancreatic {beta} Cell Death.
R. K. Humphrey, S. M. A. Yu, A. Bellary, S. Gonuguntla, M. Yebra, and U. S. Jhala (2013)
J. Biol. Chem. 288, 2428-2440
   Abstract »    Full Text »    PDF »
The E3 ubiquitin ligase MARCH8 negatively regulates IL-1{beta}-induced NF-{kappa}B activation by targeting the IL1RAP coreceptor for ubiquitination and degradation.
R. Chen, M. Li, Y. Zhang, Q. Zhou, and H.-B. Shu (2012)
PNAS 109, 14128-14133
   Abstract »    Full Text »    PDF »
Maximal Adjuvant Activity of Nasally Delivered IL-1{alpha} Requires Adjuvant-Responsive CD11c+ Cells and Does Not Correlate with Adjuvant-Induced In Vivo Cytokine Production.
A. L. Thompson, B. T. Johnson, G. D. Sempowski, M. D. Gunn, B. Hou, A. L. DeFranco, and H. F. Staats (2012)
J. Immunol. 188, 2834-2846
   Abstract »    Full Text »    PDF »
Interleukin-1{beta} (IL-1{beta}) promotes susceptibility of Toll-like receptor 5 (TLR5) deficient mice to colitis.
F. A. Carvalho, I. Nalbantoglu, S. Ortega-Fernandez, J. D. Aitken, Y. Su, O. Koren, W. A. Walters, R. Knight, R. E. Ley, M. Vijay-Kumar, et al. (2012)
Gut 61, 373-384
   Abstract »    Full Text »    PDF »
c-Jun N-terminal kinase phosphorylates DCP1a to control formation of P bodies.
K. Rzeczkowski, K. Beuerlein, H. Muller, O. Dittrich-Breiholz, H. Schneider, D. Kettner-Buhrow, H. Holtmann, and M. Kracht (2011)
J. Cell Biol. 194, 581-596
   Abstract »    Full Text »    PDF »
Serum Amyloid A Activates the NLRP3 Inflammasome and Promotes Th17 Allergic Asthma in Mice.
J. L. Ather, K. Ckless, R. Martin, K. L. Foley, B. T. Suratt, J. E. Boyson, K. A. Fitzgerald, R. A. Flavell, S. C. Eisenbarth, and M. E. Poynter (2011)
J. Immunol. 187, 64-73
   Abstract »    Full Text »    PDF »
Interleukin-1 in the pathogenesis and treatment of inflammatory diseases.
C. A. Dinarello (2011)
Blood 117, 3720-3732
   Abstract »    Full Text »    PDF »
The biological paths of IL-1 family members IL-18 and IL-33.
D. E. Smith (2011)
J. Leukoc. Biol. 89, 383-392
   Abstract »    Full Text »    PDF »
Neuropeptide Y Modulation of Interleukin-1{beta} (IL-1{beta})-induced Nitric Oxide Production in Microglia.
R. Ferreira, S. Xapelli, T. Santos, A. P. Silva, A. Cristovao, L. Cortes, and J. O. Malva (2010)
J. Biol. Chem. 285, 41921-41934
   Abstract »    Full Text »    PDF »
IL-1-induced Post-transcriptional Mechanisms Target Overlapping Translational Silencing and Destabilizing Elements in I{kappa}B{zeta} mRNA.
S. Dhamija, A. Doerrie, R. Winzen, O. Dittrich-Breiholz, A. Taghipour, N. Kuehne, M. Kracht, and H. Holtmann (2010)
J. Biol. Chem. 285, 29165-29178
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882