Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 9 March 2010
Vol. 3, Issue 112, p. re3
[DOI: 10.1126/scisignal.3112re3]

REVIEWS

Stress-Activated Cap'n'collar Transcription Factors in Aging and Human Disease

Gerasimos P. Sykiotis1,2* and Dirk Bohmann1

1 Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA.
2 Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit, Department of Internal Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.

Abstract: Cap’n’collar (Cnc) transcription factors are conserved in metazoans and have important developmental and homeostatic functions. The vertebrate Nrf1, Nrf2, and Nrf3; the Caenorhabditis elegans SKN-1; and the Drosophila CncC comprise a subgroup of Cnc factors that mediate adaptive responses to cellular stress. The most studied stress-activated Cnc factor is Nrf2, which orchestrates the transcriptional response of cells to oxidative stressors and electrophilic xenobiotics. In rodent models, signaling by Nrf2 defends against oxidative stress and aging-associated disorders, such as neurodegeneration, respiratory diseases, and cancer. In humans, polymorphisms that decrease Nrf2 abundance have been associated with various pathologies of the skin, respiratory system, and digestive tract. In addition to preventing disease in rodents and humans, Cnc factors have life-span–extending and anti-aging functions in invertebrates. However, despite the pro-longevity and antioxidant roles of stress-activated Cnc factors, their activity paradoxically declines in aging model organisms and in humans suffering from progressive respiratory disease or neurodegeneration. We review the roles and regulation of stress-activated Cnc factors across species, present all reported instances in which their activity is paradoxically decreased in aging and disease, and discuss the possibility that the pharmacological restoration of Nrf2 signaling may be useful in the prevention and treatment of age-related diseases.

* Corresponding author. E-mail: gerasimos_sykiotis{at}urmc.rochester.edu

Citation: G. P. Sykiotis, D. Bohmann, Stress-Activated Cap'n'collar Transcription Factors in Aging and Human Disease. Sci. Signal. 3, re3 (2010).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Keap1 inhibition attenuates glomerulosclerosis.
Y. Miyazaki, A. Shimizu, I. Pastan, K. Taguchi, E. Naganuma, T. Suzuki, T. Hosoya, T. Yokoo, A. Saito, T. Miyata, et al. (2014)
Nephrol. Dial. Transplant. 29, 783-791
   Abstract »    Full Text »    PDF »
Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis.
T. Wu, F. Zhao, B. Gao, C. Tan, N. Yagishita, T. Nakajima, P. K. Wong, E. Chapman, D. Fang, and D. D. Zhang (2014)
Genes & Dev. 28, 708-722
   Abstract »    Full Text »    PDF »
HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response.
B. Rotblat, A. L. Southwell, D. E. Ehrnhoefer, N. H. Skotte, M. Metzler, S. Franciosi, G. Leprivier, S. P. Somasekharan, A. Barokas, Y. Deng, et al. (2014)
PNAS 111, 3032-3037
   Abstract »    Full Text »    PDF »
Keratin 16 regulates innate immunity in response to epidermal barrier breach.
J. C. Lessard, S. Pina-Paz, J. D. Rotty, R. P. Hickerson, R. L. Kaspar, A. Balmain, and P. A. Coulombe (2013)
PNAS 110, 19537-19542
   Abstract »    Full Text »    PDF »
A Negative-Feedback Loop between the Detoxification/Antioxidant Response Factor SKN-1 and Its Repressor WDR-23 Matches Organism Needs with Environmental Conditions.
C. K. Leung, Y. Wang, A. Deonarine, L. Tang, S. Prasse, and K. P. Choe (2013)
Mol. Cell. Biol. 33, 3524-3537
   Abstract »    Full Text »    PDF »
The Casein Kinase 2-Nrf1 Axis Controls the Clearance of Ubiquitinated Proteins by Regulating Proteasome Gene Expression.
Y. Tsuchiya, H. Taniguchi, Y. Ito, T. Morita, M. R. Karim, N. Ohtake, K. Fukagai, T. Ito, S. Okamuro, S.-i. Iemura, et al. (2013)
Mol. Cell. Biol. 33, 3461-3472
   Abstract »    Full Text »    PDF »
Role of impaired Nrf2 activation in the pathogenesis of oxidative stress and inflammation in chronic tubulo-interstitial nephropathy.
M. A. Aminzadeh, S. B. Nicholas, K. C. Norris, and N. D. Vaziri (2013)
Nephrol. Dial. Transplant. 28, 2038-2045
   Abstract »    Full Text »    PDF »
Molecular Biology of Atherosclerosis.
P. N. Hopkins (2013)
Physiol Rev 93, 1317-1542
   Abstract »    Full Text »    PDF »
Upregulation of Nrf2 expression by human cytomegalovirus infection protects host cells from oxidative stress.
J. Lee, K. Koh, Y.-E. Kim, J.-H. Ahn, and S. Kim (2013)
J. Gen. Virol. 94, 1658-1668
   Abstract »    Full Text »    PDF »
Bach2 maintains T cells in a naive state by suppressing effector memory-related genes.
S.-i. Tsukumo, M. Unno, A. Muto, A. Takeuchi, K. Kometani, T. Kurosaki, K. Igarashi, and T. Saito (2013)
PNAS 110, 10735-10740
   Abstract »    Full Text »    PDF »
Differential regulation of proteasome functionality in reproductive vs. somatic tissues of Drosophila during aging or oxidative stress.
E. N. Tsakiri, G. P. Sykiotis, I. S. Papassideri, V. G. Gorgoulis, D. Bohmann, and I. P. Trougakos (2013)
FASEB J 27, 2407-2420
   Abstract »    Full Text »    PDF »
Proteomic Analysis of Ubiquitin Ligase KEAP1 Reveals Associated Proteins That Inhibit NRF2 Ubiquitination.
B. E. Hast, D. Goldfarb, K. M. Mulvaney, M. A. Hast, P. F. Siesser, F. Yan, D. N. Hayes, and M. B. Major (2013)
Cancer Res. 73, 2199-2210
   Abstract »    Full Text »    PDF »
A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative stress adaptation in mammals, Caenorhabditis elegans and Drosophila melanogaster.
A. M. Pickering, T. A. Staab, J. Tower, D. Sieburth, and K. J. A. Davies (2013)
J. Exp. Biol. 216, 543-553
   Abstract »    Full Text »    PDF »
The transcription factor NF-E2-related Factor 2 (Nrf2): a protooncogene?.
P. Shelton and A. K. Jaiswal (2013)
FASEB J 27, 414-423
   Abstract »    Full Text »    PDF »
p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition.
S. K. Radhakrishnan, W. den Besten, and R. J. Deshaies (2013)
eLife Sci 3, e01856
   Abstract »    Full Text »    PDF »
Oxidative stress contributes to liver damage in a murine model of alpha-1-antitrypsin deficiency.
N. Y. Marcus, K. Blomenkamp, M. Ahmad, and J. H. Teckman (2012)
Experimental Biology and Medicine 237, 1163-1172
   Abstract »    Full Text »    PDF »
Identification of UV-protective Activators of Nuclear Factor Erythroid-derived 2-Related Factor 2 (Nrf2) by Combining a Chemical Library Screen with Computer-based Virtual Screening.
F. Lieder, F. Reisen, T. Geppert, G. Sollberger, H.-D. Beer, U. auf dem Keller, M. Schafer, M. Detmar, G. Schneider, and S. Werner (2012)
J. Biol. Chem. 287, 33001-33013
   Abstract »    Full Text »    PDF »
Regulation of APC development, immune response, and autoimmunity by Bach1/HO-1 pathway in mice.
A. Y.-L. So, Y. Garcia-Flores, A. Minisandram, A. Martin, K. Taganov, M. Boldin, and D. Baltimore (2012)
Blood 120, 2428-2437
   Abstract »    Full Text »    PDF »
Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha.
B. N. Chorley, M. R. Campbell, X. Wang, M. Karaca, D. Sambandan, F. Bangura, P. Xue, J. Pi, S. R. Kleeberger, and D. A. Bell (2012)
Nucleic Acids Res. 40, 7416-7429
   Abstract »    Full Text »    PDF »
NF-E2-Related Factor 1 (Nrf1) Serves as a Novel Regulator of Hepatic Lipid Metabolism through Regulation of the Lipin1 and PGC-1{beta} Genes.
Y. Hirotsu, N. Hataya, F. Katsuoka, and M. Yamamoto (2012)
Mol. Cell. Biol. 32, 2760-2770
   Abstract »    Full Text »    PDF »
{alpha}-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson's disease.
I. Lastres-Becker, A. Ulusoy, N. G. Innamorato, G. Sahin, A. Rabano, D. Kirik, and A. Cuadrado (2012)
Hum. Mol. Genet. 21, 3173-3192
   Abstract »    Full Text »    PDF »
Nrf2 links epidermal barrier function with antioxidant defense.
M. Schafer, H. Farwanah, A.-H. Willrodt, A. J. Huebner, K. Sandhoff, D. Roop, D. Hohl, W. Bloch, and S. Werner (2012)
EMBO Mol Med. 4, 364-379
   Abstract »    Full Text »    PDF »
Genetic evidence of a redox-dependent systemic wound response via Hayan Protease-Phenoloxidase system in Drosophila.
H.-J. Nam, I.-H. Jang, H. You, K.-A. Lee, and W.-J. Lee (2012)
EMBO J. 31, 1253-1265
   Abstract »    Full Text »    PDF »
Dual Regulation of the Transcriptional Activity of Nrf1 by {beta}-TrCP- and Hrd1-Dependent Degradation Mechanisms.
Y. Tsuchiya, T. Morita, M. Kim, S.-i. Iemura, T. Natsume, M. Yamamoto, and A. Kobayashi (2011)
Mol. Cell. Biol. 31, 4500-4512
   Abstract »    Full Text »    PDF »
Nrf2 Represses FGF21 During Long-Term High-Fat Diet-Induced Obesity in Mice.
D. V. Chartoumpekis, P. G. Ziros, A. I. Psyrogiannis, A. G. Papavassiliou, V. E. Kyriazopoulou, G. P. Sykiotis, and I. G. Habeos (2011)
Diabetes 60, 2465-2473
   Abstract »    Full Text »    PDF »
Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson's disease.
M. C. Barone, G. P. Sykiotis, and D. Bohmann (2011)
Dis. Model. Mech. 4, 701-707
   Abstract »    Full Text »    PDF »
Transcriptional regulation of xenobiotic detoxification in Drosophila.
J. R. Misra, M. A. Horner, G. Lam, and C. S. Thummel (2011)
Genes & Dev. 25, 1796-1806
   Abstract »    Full Text »    PDF »
Genetic Deletion of Nrf2 Promotes Immortalization and Decreases Life Span of Murine Embryonic Fibroblasts.
L. Jodar, E. M. Mercken, J. Ariza, C. Younts, J. A. Gonzalez-Reyes, F. J. Alcain, I. Buron, R. de Cabo, and J. M. Villalba (2011)
J Gerontol A Biol Sci Med Sci 66A, 247-256
   Abstract »    Full Text »    PDF »
Basic Leucine Zipper Protein Cnc-C Is a Substrate and Transcriptional Regulator of the Drosophila 26S Proteasome.
K. B. Grimberg, A. Beskow, D. Lundin, M. M. Davis, and P. Young (2011)
Mol. Cell. Biol. 31, 897-909
   Abstract »    Full Text »    PDF »
SKN-1/Nrf2 Inhibits Dopamine Neuron Degeneration in a Caenorhabditis elegans Model of Methylmercury Toxicity.
N. VanDuyn, R. Settivari, G. Wong, and R. Nass (2010)
Toxicol. Sci. 118, 613-624
   Abstract »    Full Text »    PDF »
Genetic Mechanisms of Coffee Extract Protection in a Caenorhabditis elegans Model of {beta}-Amyloid Peptide Toxicity.
V. Dostal, C. M. Roberts, and C. D. Link (2010)
Genetics 186, 857-866
   Abstract »    Full Text »    PDF »
Genetic Analysis of Cytoprotective Functions Supported by Graded Expression of Keap1.
K. Taguchi, J. M. Maher, T. Suzuki, Y. Kawatani, H. Motohashi, and M. Yamamoto (2010)
Mol. Cell. Biol. 30, 3016-3026
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882