Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 16 March 2010
Vol. 3, Issue 113, p. ra20
[DOI: 10.1126/scisignal.2000517]


Inferring Signaling Pathway Topologies from Multiple Perturbation Measurements of Specific Biochemical Species

Tian-Rui Xu1*, Vladislav Vyshemirsky2*, Amélie Gormand1*{dagger}, Alex von Kriegsheim3{ddagger}, Mark Girolami2§, George S. Baillie1, Dominic Ketley2, Allan J. Dunlop1, Graeme Milligan1, Miles D. Houslay1, and Walter Kolch1,3{ddagger}§

1 Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
2 Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.
3 The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK.

* These authors contributed equally to this work.

{dagger} Present address: Department of Experimental Medical Science, Lund University, BMC C11, SE 221 84 Lund, Sweden. E-mail: amelie.gormand{at}

{ddagger} Present address: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Dublin, Ireland.

Abstract: The specification of biological decisions by signaling pathways is encoded by the interplay between activation dynamics and network topologies. Although we can describe complex networks, we cannot easily determine which topology the cell actually uses to transduce a specific signal. Experimental testing of all plausible topologies is infeasible because of the combinatorially large number of experiments required to explore the complete hypothesis space. Here, we demonstrate that Bayesian inference–based modeling provides an approach to explore and constrain this hypothesis space, permitting the rational ranking of pathway models. Our approach can use measurements of a limited number of biochemical species when combined with multiple perturbations. As proof of concept, we examined the activation of the extracellular signal–regulated kinase (ERK) pathway by epidermal growth factor. The predicted and experimentally validated model shows that both Raf-1 and, unexpectedly, B-Raf are needed to fully activate ERK in two different cell lines. Thus, our formal methodology rationally infers evidentially supported pathway topologies even when a limited number of biochemical and kinetic measurements are available.

§ To whom correspondence should be addressed. E-mail: girolami{at} (M.G.) and walter.kolch{at} (W.K.).

Citation: T.-R. Xu, V. Vyshemirsky, A. Gormand, A. von Kriegsheim, M. Girolami, G. S. Baillie, D. Ketley, A. J. Dunlop, G. Milligan, M. D. Houslay, W. Kolch, Inferring Signaling Pathway Topologies from Multiple Perturbation Measurements of Specific Biochemical Species. Sci. Signal. 3, ra20 (2010).

Read the Full Text

Competing G protein-coupled receptor kinases balance G protein and {beta}-arrestin signaling.
D. Heitzler, G. Durand, N. Gallay, A. Rizk, S. Ahn, J. Kim, J. D. Violin, L. Dupuy, C. Gauthier, V. Piketty, et al. (2014)
Mol Syst Biol 8, 590
   Abstract »    Full Text »    PDF »
Properties of cell death models calibrated and compared using Bayesian approaches.
H. Eydgahi, W. W. Chen, J. L. Muhlich, D. Vitkup, J. N. Tsitsiklis, and P. K. Sorger (2014)
Mol Syst Biol 9, 644
   Abstract »    Full Text »    PDF »
Programming biological models in Python using PySB.
C. F. Lopez, J. L. Muhlich, J. A. Bachman, and P. K. Sorger (2014)
Mol Syst Biol 9, 646
   Abstract »    Full Text »    PDF »
Reverse engineering and identification in systems biology: strategies, perspectives and challenges.
A. F. Villaverde and J. R. Banga (2014)
J R Soc Interface 11, 20130505
   Abstract »    Full Text »    PDF »
Topological augmentation to infer hidden processes in biological systems.
M. Sunnaker, E. Zamora-Sillero, A. Lopez Garcia de Lomana, F. Rudroff, U. Sauer, J. Stelling, and A. Wagner (2014)
Bioinformatics 30, 221-227
   Abstract »    Full Text »    PDF »
Near-optimal experimental design for model selection in systems biology.
A. G. Busetto, A. Hauser, G. Krummenacher, M. Sunnaker, S. Dimopoulos, C. S. Ong, J. Stelling, and J. M. Buhmann (2013)
Bioinformatics 29, 2625-2632
   Abstract »    Full Text »    PDF »
Automatic Generation of Predictive Dynamic Models Reveals Nuclear Phosphorylation as the Key Msn2 Control Mechanism.
M. Sunnaker, E. Zamora-Sillero, R. Dechant, C. Ludwig, A. G. Busetto, A. Wagner, and J. Stelling (2013)
Science Signaling 6, ra41
   Abstract »    Full Text »    PDF »
Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation.
V. Stathopoulos and M. A. Girolami (2012)
Phil Trans R Soc A 371, 20110541
   Abstract »    Full Text »    PDF »
Bayesian Inference of Signaling Network Topology in a Cancer Cell Line.
S. M. Hill, Y. Lu, J. Molina, L. M. Heiser, P. T. Spellman, T. P. Speed, J. W. Gray, G. B. Mills, and S. Mukherjee (2012)
Bioinformatics 28, 2804-2810
   Abstract »    Full Text »    PDF »
The Response of Cancers to BRAF Inhibition Underscores the Importance of Cancer Systems Biology.
E. C. Stites (2012)
Science Signaling 5, pe46
   Abstract »    Full Text »    PDF »
Network inference using steady-state data and Goldbeter-koshland kinetics.
C. J. Oates, B. T. Hennessy, Y. Lu, G. B. Mills, and S. Mukherjee (2012)
Bioinformatics 28, 2342-2348
   Abstract »    Full Text »    PDF »
Identification of aberrant pathways and network activities from high-throughput data.
J. Wang, Y. Zhang, C. Marian, and H. W. Ressom (2012)
Brief Bioinform 13, 406-419
   Abstract »    Full Text »    PDF »
Computational Approaches for Analyzing Information Flow in Biological Networks.
B. Kholodenko, M. B. Yaffe, and W. Kolch (2012)
Science Signaling 5, re1
   Abstract »    Full Text »    PDF »
A Dynamic Network Model of mTOR Signaling Reveals TSC-Independent mTORC2 Regulation.
P. Dalle Pezze, A. G. Sonntag, A. Thien, M. T. Prentzell, M. Godel, S. Fischer, E. Neumann-Haefelin, T. B. Huber, R. Baumeister, D. P. Shanley, et al. (2012)
Science Signaling 5, ra25
   Abstract »    Full Text »    PDF »
Optimal structural inference of signaling pathways from unordered and overlapping gene sets.
L. R. Acharya, T. Judeh, G. Wang, and D. Zhu (2012)
Bioinformatics 28, 546-556
   Abstract »    Full Text »    PDF »
Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods.
B. Calderhead and M. Girolami (2011)
Interface Focus 1, 821-835
   Abstract »    Full Text »    PDF »
Spatiotemporally Regulated Protein Kinase A Activity Is a Critical Regulator of Growth Factor-Stimulated Extracellular Signal-Regulated Kinase Signaling in PC12 Cells.
K. J. Herbst, M. D. Allen, and J. Zhang (2011)
Mol. Cell. Biol. 31, 4063-4075
   Abstract »    Full Text »    PDF »
Raf Family Kinases: Old Dogs Have Learned New Tricks.
D. Matallanas, M. Birtwistle, D. Romano, A. Zebisch, J. Rauch, A. von Kriegsheim, and W. Kolch (2011)
Genes & Cancer 2, 232-260
   Abstract »    Full Text »    PDF »
Regulation by Ca2+-Signaling Pathways of Adenylyl Cyclases.
M. L. Halls and D. M. F. Cooper (2011)
Cold Spring Harb Perspect Biol 3, a004143
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882