Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 6 April 2010
Vol. 3, Issue 116, p. ec105
[DOI: 10.1126/scisignal.3116ec105]


Channels Open and Closed Case

Valda Vinson

Science, AAAS, Washington, DC 20005, USA

Voltage-dependent ion channels are gated by voltage sensors that show a switchlike response to voltage differences across the membrane. Tao et al. used mutagenesis, electrophysiology, and x-ray crystallography to gain insight into the molecular basis of this response in voltage-dependent potassium channels. An occluded site was identified that catalyzes translation of positive charges across the membrane. The closed channel appears to be associated with a distribution of conformations, depending on the degree of hyperpolarization of the membrane, whereas the open channel appears to be associated with a specific conformation. Thus, the transition of the ion channel from open to closed occurs over a very small voltage difference.

X. Tao, A. Lee, W. Limapichat, D. A. Dougherty, R. MacKinnon, A gating charge transfer center in voltage sensors. Science 328, 67–73 (2010). [Abstract] [Full Text]

Citation: V. Vinson, Open and Closed Case. Sci. Signal. 3, ec105 (2010).

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882