Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 13 April 2010
Vol. 3, Issue 117, p. ra29
[DOI: 10.1126/scisignal.2000594]


Identification of the miR-106b~25 MicroRNA Cluster as a Proto-Oncogenic PTEN-Targeting Intron That Cooperates with Its Host Gene MCM7 in Transformation

Laura Poliseno1, Leonardo Salmena1*, Luisa Riccardi1*, Alessandro Fornari2,3, Min Sup Song1, Robin M. Hobbs1, Paolo Sportoletti1, Shorheh Varmeh1, Ainara Egia1, Giuseppe Fedele2,4, Lucia Rameh5, Massimo Loda2,4, and Pier Paolo Pandolfi1{dagger}

1 Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
2 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
3 Department of Biomedical Sciences and Human Oncology, Molinette Hospital, University of Turin, 10126 Turin, Italy.
4 Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
5 Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA.

* These authors contributed equally to this work.

Abstract: PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a tumor suppressor that antagonizes signaling through the phosphatidylinositol 3-kinase–Akt pathway. We have demonstrated that subtle decreases in PTEN abundance can have critical consequences for tumorigenesis. Here, we used a computational approach to identify miR-22, miR-25, and miR-302 as three PTEN-targeting microRNA (miRNA) families found within nine genomic loci. We showed that miR-22 and the miR-106b~25 cluster are aberrantly overexpressed in human prostate cancer, correlate with abundance of the miRNA processing enzyme DICER, and potentiate cellular transformation both in vitro and in vivo. We demonstrated that the intronic miR-106b~25 cluster cooperates with its host gene MCM7 in cellular transformation both in vitro and in vivo, so that the concomitant overexpression of MCM7 and the miRNA cluster triggers prostatic intraepithelial neoplasia in transgenic mice. Therefore, the MCM7 gene locus delivers two simultaneous oncogenic insults when amplified or overexpressed in human cancer. Thus, we have uncovered a proto-oncogenic miRNA-dependent network for PTEN regulation and defined the MCM7 locus as a critical factor in initiating prostate tumorigenesis.

{dagger} To whom correspondence should be addressed. E-mail: ppandolf{at}

Citation: L. Poliseno, L. Salmena, L. Riccardi, A. Fornari, M. S. Song, R. M. Hobbs, P. Sportoletti, S. Varmeh, A. Egia, G. Fedele, L. Rameh, M. Loda, P. P. Pandolfi, Identification of the miR-106b~25 MicroRNA Cluster as a Proto-Oncogenic PTEN-Targeting Intron That Cooperates with Its Host Gene MCM7 in Transformation. Sci. Signal. 3, ra29 (2010).

Read the Full Text

MicroRNAs in the development and pathobiology of uterine leiomyomata: does evidence support future strategies for clinical intervention?.
A. E. Karmon, E. R. Cardozo, B. R. Rueda, and A. K. Styer (2014)
Hum. Reprod. Update
   Abstract »    Full Text »    PDF »
microRNAs are biomarkers of oncogenic human papillomavirus infections.
X. Wang, H.-K. Wang, Y. Li, M. Hafner, N. S. Banerjee, S. Tang, D. Briskin, C. Meyers, L. T. Chow, X. Xie, et al. (2014)
PNAS 111, 4262-4267
   Abstract »    Full Text »    PDF »
Potentially Prognostic miRNAs in HPV-Associated Oropharyngeal Carcinoma.
A. B. Y. Hui, A. Lin, W. Xu, L. Waldron, B. Perez-Ordonez, I. Weinreb, W. Shi, J. Bruce, S. H. Huang, B. O'Sullivan, et al. (2013)
Clin. Cancer Res. 19, 2154-2162
   Abstract »    Full Text »    PDF »
The 106b~25 microRNA cluster is essential for neovascularization after hindlimb ischaemia in mice.
J. Semo, R. Sharir, A. Afek, C. Avivi, I. Barshack, S. Maysel-Auslender, Y. Krelin, D. Kain, M. Entin-Meer, G. Keren, et al. (2013)
Eur. Heart J.
   Abstract »    Full Text »    PDF »
A Myc-microRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes.
D. Polioudakis, A. A. Bhinge, P. J. Killion, B.-K. Lee, N. S. Abell, and V. R. Iyer (2013)
Nucleic Acids Res. 41, 2239-2254
   Abstract »    Full Text »    PDF »
MicroRNA-144 promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma through repression of PTEN.
L.-Y. Zhang, V. Ho-Fun Lee, A. M. G. Wong, D. L.-W. Kwong, Y.-H. Zhu, S.-S. Dong, K.-L. Kong, J. Chen, S.-W. Tsao, X.-Y. Guan, et al. (2013)
Carcinogenesis 34, 454-463
   Abstract »    Full Text »    PDF »
miR-3151 interplays with its host gene BAALC and independently affects outcome of patients with cytogenetically normal acute myeloid leukemia.
A.-K. Eisfeld, G. Marcucci, K. Maharry, S. Schwind, M. D. Radmacher, D. Nicolet, H. Becker, K. Mrozek, S. P. Whitman, K. H. Metzeler, et al. (2012)
Blood 120, 249-258
   Abstract »    Full Text »    PDF »
Human ESC Self-renewal Promoting microRNAs Induce Epithelial-Mesenchymal Transition in Hepatocytes by Controlling the PTEN and TGF{beta} Tumor Suppressor Signaling Pathways.
C. J. Jung, S. Iyengar, K. R. Blahnik, J. X. Jiang, C. Tahimic, N. J. Torok, R. W. de vere White, P. J. Farnham, and M. Zern (2012)
Mol. Cancer Res. 10, 979-991
   Abstract »    Full Text »    PDF »
MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer.
R. S. Hudson, M. Yi, D. Esposito, S. K. Watkins, A. A. Hurwitz, H. G. Yfantis, D. H. Lee, J. F. Borin, M. J. Naslund, R. B. Alexander, et al. (2012)
Nucleic Acids Res. 40, 3689-3703
   Abstract »    Full Text »    PDF »
Serum microRNA profiling and breast cancer risk: the use of miR-484/191 as endogenous controls.
Z. Hu, J. Dong, L.-E. Wang, H. Ma, J. Liu, Y. Zhao, J. Tang, X. Chen, J. Dai, Q. Wei, et al. (2012)
Carcinogenesis 33, 828-834
   Abstract »    Full Text »    PDF »
Prioritizing human cancer microRNAs based on genes' functional consistency between microRNA and cancer.
X. Li, Q. Wang, Y. Zheng, S. Lv, S. Ning, J. Sun, T. Huang, Q. Zheng, H. Ren, J. Xu, et al. (2011)
Nucleic Acids Res. 39, e153
   Abstract »    Full Text »    PDF »
Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response.
I. Lipchina, Y. Elkabetz, M. Hafner, R. Sheridan, A. Mihailovic, T. Tuschl, C. Sander, L. Studer, and D. Betel (2011)
Genes & Dev. 25, 2173-2186
   Abstract »    Full Text »    PDF »
PTEN Protein Loss by Immunostaining: Analytic Validation and Prognostic Indicator for a High Risk Surgical Cohort of Prostate Cancer Patients.
T. L. Lotan, B. Gurel, S. Sutcliffe, D. Esopi, W. Liu, J. Xu, J. L. Hicks, B. H. Park, E. Humphreys, A. W. Partin, et al. (2011)
Clin. Cancer Res. 17, 6563-6573
   Abstract »    Full Text »    PDF »
miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma.
K. Conkrite, M. Sundby, S. Mukai, J. M. Thomson, D. Mu, S. M. Hammond, and D. MacPherson (2011)
Genes & Dev. 25, 1734-1745
   Abstract »    Full Text »    PDF »
MicroRNAs Add an Additional Layer to the Complexity of Cell Signaling.
J. I. Herschkowitz and X. Fu (2011)
Science Signaling 4, jc5
   Abstract »    Full Text »    PDF »
Tumor Suppressor miR-22 Determines p53-Dependent Cellular Fate through Post-transcriptional Regulation of p21.
N. Tsuchiya, M. Izumiya, H. Ogata-Kawata, K. Okamoto, Y. Fujiwara, M. Nakai, A. Okabe, A. J. Schetter, E. D. Bowman, Y. Midorikawa, et al. (2011)
Cancer Res. 71, 4628-4639
   Abstract »    Full Text »    PDF »
MicroRNAs as Regulators of Signal Transduction in Urological Tumors.
A. Fendler, C. Stephan, G. M. Yousef, and K. Jung (2011)
Clin. Chem. 57, 954-968
   Abstract »    Full Text »    PDF »
Cancer and neurodegenerative disorders: pathogenic convergence through microRNA regulation.
L. Du and A. Pertsemlidis (2011)
J Mol Cell Biol 3, 176-180
   Abstract »    Full Text »    PDF »
miTALOS: Analyzing the tissue-specific regulation of signaling pathways by human and mouse microRNAs.
A. Kowarsch, M. Preusse, C. Marr, and F. J. Theis (2011)
RNA 17, 809-819
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 4 January 2011.
M. B. Yaffe and A. M. VanHook (2011)
Science Signaling 4, pc1
   Abstract »    Full Text »
Posttranscriptional Regulation of PTEN Dosage by Noncoding RNAs.
L. He (2010)
Science Signaling 3, pe39
   Abstract »    Full Text »    PDF »
From man to mouse and back again: advances in defining tumor AKTivities in vivo.
D. F. Restuccia and B. A. Hemmings (2010)
Dis. Model. Mech. 3, 705-720
   Abstract »    Full Text »    PDF »
Basal and Treatment-Induced Activation of AKT Mediates Resistance to Cell Death by AZD6244 (ARRY-142886) in Braf-Mutant Human Cutaneous Melanoma Cells.
Y. N. V. Gopal, W. Deng, S. E. Woodman, K. Komurov, P. Ram, P. D. Smith, and M. A. Davies (2010)
Cancer Res. 70, 8736-8747
   Abstract »    Full Text »    PDF »
Molecular genetics of prostate cancer: new prospects for old challenges.
M. M. Shen and C. Abate-Shen (2010)
Genes & Dev. 24, 1967-2000
   Abstract »    Full Text »    PDF »
PI(3)King Apart PTEN's Role in Cancer.
S. Zhang and D. Yu (2010)
Clin. Cancer Res. 16, 4325-4330
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882