Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 18 May 2010
Vol. 3, Issue 122, p. ec152
[DOI: 10.1126/scisignal.3122ec152]


Parasitology It's a Knockout

Stella M. Hurtley

Science, AAAS, Cambridge CB2 1LQ, UK

The malaria parasite is one of the most important pathogens of humans. Increasing drug resistance is an imminent public health disaster, and we urgently need to find new drugs. The recently acquired malarial genomes provide a plethora of targets. However, due to the genetic intractability of the parasite, it has been difficult to identify essential genes in the clinically relevant blood stage of the parasite. Dvorin et al. investigated the function of a Plasmodium falciparum plant-like calcium-dependent protein kinase, PfCDPK5, which is expressed in the invasive blood-stage forms of the parasite. A system for conditional protein expression allowed the production of a functional knockout in the bloodstream stage of the parasite. PfCDPK5 was required for parasite egress from the human host erythrocyte, an essential step in the parasite life cycle.

J. D. Dvorin, D. C. Martyn, S. D. Patel, J. S. Grimley, C. R. Collins, C. S. Hopp, A. T. Bright, S. Westenberger, E. Winzeler, M. J. Blackman, D. A. Baker, T. J. Wandless, M. T. Duraisingh, A plant-like kinase in Plasmodium falciparum regulates parasite egress from erythrocytes. Science 328, 910–912 (2010). [Abstract] [Full Text]

Citation: S. M. Hurtley, It's a Knockout. Sci. Signal. 3, ec152 (2010).

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882