Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 27 July 2010
Vol. 3, Issue 132, p. ec234
[DOI: 10.1126/scisignal.3132ec234]

EDITORS' CHOICE

RNA Splicing Making the Final Cut

Helen Pickersgill

Science, AAAS, Washington, DC 20005, USA

RNA splicing, which involves selectively cutting and pasting messenger RNA to generate different proteins, is critical in regulating human physiology and diseases. However, our knowledge of the underlying rules governing splicing regulation remains incomplete. The recent emergence of next-generation sequencing and other high-throughput technologies has provided an opportunity to transform our understanding of RNA regulation. Zhang et al. combined multiple data sets to generate a robust and relatively complete picture of splicing regulation by the mammalian neuronal splicing factor Nova in the brain. About 700 splicing events were identified, including many novel target exons, some likely to be involved in neurological disease. Combining genomic studies with computational biology also yielded insight into the regulation of alternative splicing.

C. Zhang, M. A. Frias, A. Mele, M. Ruggiu, T. Eom, C. B. Marney, H. Wang, D. D. Licatalosi, J. J. Fak, R. B. Darnell, Integrative modeling defines the Nova splicing-regulatory network and its combinatorial controls. Science 329, 439–443 (2010). [Abstract] [Full Text]

Citation: H. Pickersgill, Making the Final Cut. Sci. Signal. 3, ec234 (2010).


To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882