Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 17 August 2010
Vol. 3, Issue 135, p. ra62
[DOI: 10.1126/scisignal.2000955]


Arginine Usage in Mycobacteria-Infected Macrophages Depends on Autocrine-Paracrine Cytokine Signaling

Joseph E. Qualls1,2, Geoffrey Neale3, Amber M. Smith1,2, Mi-Sun Koo4, Ashley A. DeFreitas1,2, Huiyuan Zhang5, Gilla Kaplan4, Stephanie S. Watowich5,6, and Peter J. Murray1,2*

1 Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA.
2 Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA.
3 Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA.
4 Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
5 Department of Immunology and Center for Cancer Immunology Research, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
6 University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA.

Abstract: Nitric oxide (NO) produced by macrophages is toxic to host tissues and invading pathogens, and its regulation is essential to suppress host cytotoxicity. Macrophage arginase 1 (Arg1) competes with NO synthases for arginine, a substrate common to both types of enzymes, to inhibit NO production. Two signal transduction pathways control the production of Arg1 in macrophages: One pathway dependent on the Toll-like receptor adaptor protein myeloid differentiation marker 88 (MyD88) induces the expression of Arg1 during intracellular infections, whereas another pathway, which depends on signal transducer and activator of transcription 6 (STAT6), is required for Arg1 expression in alternatively activated macrophages. We found that mycobacteria-infected macrophages produced soluble factors, including interleukin-6 (IL-6), IL-10, and granulocyte colony-stimulating factor (G-CSF), that induced expression of Arg1 in an autocrine-paracrine manner. Arg1 expression was controlled by the MyD88-dependent production of these cytokines rather than by cell-intrinsic MyD88 signaling to Arg1. Our study revealed that the MyD88-dependent pathway that induced the expression of Arg1 after infection by mycobacteria required STAT3 activation and that this pathway may cause the development of an immunosuppressive niche in granulomas because of the induced production of Arg1 in surrounding uninfected macrophages.

* To whom correspondence should be addressed. E-mail: peter.murray{at}

Citation: J. E. Qualls, G. Neale, A. M. Smith, M.-S. Koo, A. A. DeFreitas, H. Zhang, G. Kaplan, S. S. Watowich, P. J. Murray, Arginine Usage in Mycobacteria-Infected Macrophages Depends on Autocrine-Paracrine Cytokine Signaling. Sci. Signal. 3, ra62 (2010).

Read the Full Text

Editorial: New tricks for innate lymphoid cells.
G. F. Sonnenberg (2013)
J. Leukoc. Biol. 94, 862-864
   Full Text »    PDF »
Extrinsic and intrinsic control of macrophage inflammatory responses.
H. B. Cohen and D. M. Mosser (2013)
J. Leukoc. Biol. 94, 913-919
   Abstract »    Full Text »    PDF »
TLR stimulation initiates a CD39-based autoregulatory mechanism that limits macrophage inflammatory responses.
H. B. Cohen, K. T. Briggs, J. P. Marino, K. Ravid, S. C. Robson, and D. M. Mosser (2013)
Blood 122, 1935-1945
   Abstract »    Full Text »    PDF »
Arginine Transport Is Impaired in C57Bl/6 Mouse Macrophages as a Result of a Deletion in the Promoter of Slc7a2 (CAT2), and Susceptibility to Leishmania Infection Is Reduced.
M. G. Sans-Fons, A. Yeramian, S. Pereira-Lopes, L. F. Santamaria-Babi, M. Modolell, J. Lloberas, and A. Celada (2013)
The Journal of Infectious Disease 207, 1684-1693
   Abstract »    Full Text »    PDF »
Dissociation of Endotoxin Tolerance and Differentiation of Alternatively Activated Macrophages.
R. Rajaiah, D. J. Perkins, S. K. Polumuri, A. Zhao, A. D. Keegan, and S. N. Vogel (2013)
J. Immunol. 190, 4763-4772
   Abstract »    Full Text »    PDF »
Differential Trafficking of TLR1 I602S Underlies Host Protection against Pathogenic Mycobacteria.
B. E. Hart and R. I. Tapping (2012)
J. Immunol. 189, 5347-5355
   Abstract »    Full Text »    PDF »
Genetic Ablation of Arginase 1 in Macrophages and Neutrophils Enhances Clearance of an Arthritogenic Alphavirus.
K. A. Stoermer, A. Burrack, L. Oko, S. A. Montgomery, L. B. Borst, R. G. Gill, and T. E. Morrison (2012)
J. Immunol. 189, 4047-4059
   Abstract »    Full Text »    PDF »
The E3 Ubiquitin Ligase Neuregulin Receptor Degradation Protein 1 (Nrdp1) Promotes M2 Macrophage Polarization by Ubiquitinating and Activating Transcription Factor CCAAT/Enhancer-binding Protein {beta} (C/EBP{beta}).
S. Ye, H. Xu, J. Jin, M. Yang, C. Wang, Y. Yu, and X. Cao (2012)
J. Biol. Chem. 287, 26740-26748
   Abstract »    Full Text »    PDF »
Quantifying Crosstalk Among Interferon-{gamma}, Interleukin-12, and Tumor Necrosis Factor Signaling Pathways Within a TH1 Cell Model.
D. J. Klinke II, N. Cheng, and E. Chambers (2012)
Science Signaling 5, ra32
   Abstract »    Full Text »    PDF »
Adenosine promotes alternative macrophage activation via A2A and A2B receptors.
B. Csoka, Z. Selmeczy, B. Koscso, Z. H. Nemeth, P. Pacher, P. J. Murray, D. Kepka-Lenhart, S. M. Morris Jr., W. C. Gause, S. J. Leibovich, et al. (2012)
FASEB J 26, 376-386
   Abstract »    Full Text »    PDF »
Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway.
J. A. Potian, W. Rafi, K. Bhatt, A. McBride, W. C. Gause, and P. Salgame (2011)
J. Exp. Med. 208, 1863-1874
   Abstract »    Full Text »    PDF »
A Distal Enhancer in Il12b Is the Target of Transcriptional Repression by the STAT3 Pathway and Requires the Basic Leucine Zipper (B-ZIP) Protein NFIL3.
A. M. Smith, J. E. Qualls, K. O'Brien, L. Balouzian, P. F. Johnson, S. Schultz-Cherry, S. T. Smale, and P. J. Murray (2011)
J. Biol. Chem. 286, 23582-23590
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 4 January 2011.
M. B. Yaffe and A. M. VanHook (2011)
Science Signaling 4, pc1
   Abstract »    Full Text »
Arginine: Master and Commander in Innate Immune Responses.
S. M. Morris Jr. (2010)
Science Signaling 3, pe27
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882