Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 24 August 2010
Vol. 3, Issue 136, p. ra64
[DOI: 10.1126/scisignal.2000998]


Akt–RSK–S6 Kinase Signaling Networks Activated by Oncogenic Receptor Tyrosine Kinases

Albrecht Moritz1*, Yu Li1*, Ailan Guo1*, Judit Villén2*{dagger}, Yi Wang1, Joan MacNeill1, Jon Kornhauser1, Kam Sprott1, Jing Zhou1, Anthony Possemato1, Jian Min Ren1, Peter Hornbeck1, Lewis C. Cantley3,4, Steven P. Gygi2, John Rush1, and Michael J. Comb1{ddagger}

1 Cell Signaling Technology Inc., 3 Trask Lane, Danvers, MA 01923, USA.
2 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
3 Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
4 Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.

* These authors contributed equally to this work.

{dagger} Present address: Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.

Abstract: Receptor tyrosine kinases (RTKs) activate pathways mediated by serine-threonine kinases, such as the PI3K (phosphatidylinositol 3-kinase)–Akt pathway, the Ras–MAPK (mitogen-activated protein kinase)–RSK (ribosomal S6 kinase) pathway, and the mTOR (mammalian target of rapamycin)–p70 S6 pathway, that control important aspects of cell growth, proliferation, and survival. The Akt, RSK, and p70 S6 family of protein kinases transmits signals by phosphorylating substrates on an RxRxxS/T motif (R, arginine; S, serine; T, threonine; and x, any amino acid). We developed a large-scale proteomic approach to identify more than 300 substrates of this kinase family in cancer cell lines driven by the c-Met, epidermal growth factor receptor (EGFR), or platelet-derived growth factor receptor {alpha} (PDGFR{alpha}) RTKs. We identified a subset of proteins with RxRxxS/T sites for which phosphorylation was decreased by RTK inhibitors (RTKIs), as well as by inhibitors of the PI3K, mTOR, and MAPK pathways, and we determined the effects of small interfering RNA directed against these substrates on cell viability. Phosphorylation of the protein chaperone SGTA (small glutamine-rich tetratricopeptide repeat–containing protein {alpha}) at serine-305 was essential for PDGFR{alpha} stabilization and cell survival in PDGFR{alpha}-dependent cancer cells. Our approach provides a new view of RTK and Akt–RSK–S6 kinase signaling, revealing previously unidentified Akt–RSK–S6 kinase substrates that merit further consideration as targets for combination therapy with RTKIs.

{ddagger} To whom correspondence should be addressed. E-mail: mcomb{at}

Citation: A. Moritz, Y. Li, A. Guo, J. Villén, Y. Wang, J. MacNeill, J. Kornhauser, K. Sprott, J. Zhou, A. Possemato, J. M. Ren, P. Hornbeck, L. C. Cantley, S. P. Gygi, J. Rush, M. J. Comb, Akt–RSK–S6 Kinase Signaling Networks Activated by Oncogenic Receptor Tyrosine Kinases. Sci. Signal. 3, ra64 (2010).

Read the Full Text

The Adherens Junction Protein Afadin Is an AKT Substrate that Regulates Breast Cancer Cell Migration.
S. Elloul, D. Kedrin, N. W. Knoblauch, A. H. Beck, and A. Toker (2014)
Mol. Cancer Res. 12, 464-476
   Abstract »    Full Text »    PDF »
Immunoaffinity Enrichment and Mass Spectrometry Analysis of Protein Methylation.
A. Guo, H. Gu, J. Zhou, D. Mulhern, Y. Wang, K. A. Lee, V. Yang, M. Aguiar, J. Kornhauser, X. Jia, et al. (2014)
Mol. Cell. Proteomics 13, 372-387
   Abstract »    Full Text »    PDF »
The Coming of Age of Phosphoproteomics--from Large Data Sets to Inference of Protein Functions.
P. P. Roux and P. Thibault (2013)
Mol. Cell. Proteomics 12, 3453-3464
   Abstract »    Full Text »    PDF »
Phosphoproteomic characterization of DNA damage response in melanoma cells following MEK/PI3K dual inhibition.
D. S. Kirkpatrick, D. J. Bustos, T. Dogan, J. Chan, L. Phu, A. Young, L. S. Friedman, M. Belvin, Q. Song, C. E. Bakalarski, et al. (2013)
PNAS 110, 19426-19431
   Abstract »    Full Text »    PDF »
Interrogating cAMP-dependent Kinase Signaling in Jurkat T Cells via a Protein Kinase A Targeted Immune-precipitation Phosphoproteomics Approach.
P. Giansanti, M. P. Stokes, J. C. Silva, A. Scholten, and A. J. R. Heck (2013)
Mol. Cell. Proteomics 12, 3350-3359
   Abstract »    Full Text »    PDF »
Development of a 5-plex SILAC Method Tuned for the Quantitation of Tyrosine Phosphorylation Dynamics.
M. Tzouros, S. Golling, D. Avila, J. Lamerz, M. Berrera, M. Ebeling, H. Langen, and A. Augustin (2013)
Mol. Cell. Proteomics 12, 3339-3349
   Abstract »    Full Text »    PDF »
A Conserved Rod Domain Phosphotyrosine That Is Targeted by the Phosphatase PTP1B Promotes Keratin 8 Protein Insolubility and Filament Organization.
N. T. Snider, H. Park, and M. B. Omary (2013)
J. Biol. Chem. 288, 31329-31337
   Abstract »    Full Text »    PDF »
RCP-driven {alpha}5{beta}1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1-IQGAP1 complex.
G. Jacquemet, D. M. Green, R. E. Bridgewater, A. von Kriegsheim, M. J. Humphries, J. C. Norman, and P. T. Caswell (2013)
J. Cell Biol. 202, 917-935
   Abstract »    Full Text »    PDF »
JNK Signaling in the Control of the Tumor-Initiating Capacity Associated with Cancer Stem Cells.
C. Kitanaka, A. Sato, and M. Okada (2013)
Genes & Cancer 4, 388-396
   Abstract »    Full Text »    PDF »
Systems-wide Analysis of K-Ras, Cdc42, and PAK4 Signaling by Quantitative Phosphoproteomics.
F. Gnad, A. Young, W. Zhou, K. Lyle, C. C. Ong, M. P. Stokes, J. C. Silva, M. Belvin, L. S. Friedman, H. Koeppen, et al. (2013)
Mol. Cell. Proteomics 12, 2070-2080
   Abstract »    Full Text »    PDF »
The protein kinase Akt/PKB regulates both prelamin A degradation and Lmna gene expression.
J. Bertacchini, F. Beretti, V. Cenni, M. Guida, F. Gibellini, L. Mediani, O. Marin, N. M. Maraldi, A. de Pol, G. Lattanzi, et al. (2013)
FASEB J 27, 2145-2155
   Abstract »    Full Text »    PDF »
Systematic analysis of the Plk-mediated phosphoregulation in eukaryotes.
Z. Liu, J. Ren, J. Cao, J. He, X. Yao, C. Jin, and Y. Xue (2013)
Brief Bioinform 14, 344-360
   Abstract »    Full Text »    PDF »
Phosphoproteomic Analysis Implicates the mTORC2-FoxO1 Axis in VEGF Signaling and Feedback Activation of Receptor Tyrosine Kinases.
G. Zhuang, K. Yu, Z. Jiang, A. Chung, J. Yao, C. Ha, K. Toy, R. Soriano, B. Haley, E. Blackwood, et al. (2013)
Science Signaling 6, ra25
   Abstract »    Full Text »    PDF »
Dynamic Phosphorylation of Tyrosine 665 in Pseudopodium-enriched Atypical Kinase 1 (PEAK1) Is Essential for the Regulation of Cell Migration and Focal Adhesion Turnover.
J. M. Bristow, T. A. Reno, M. Jo, S. L. Gonias, and R. L. Klemke (2013)
J. Biol. Chem. 288, 123-131
   Abstract »    Full Text »    PDF »
Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice.
I.-T. J. Wang, M. Allen, D. Goffin, X. Zhu, A. H. Fairless, E. S. Brodkin, S. J. Siegel, E. D. Marsh, J. A. Blendy, and Z. Zhou (2012)
PNAS 109, 21516-21521
   Abstract »    Full Text »    PDF »
Extracellular Phosphorylation and Phosphorylated Proteins: Not Just Curiosities But Physiologically Important.
G. Yalak and V. Vogel (2012)
Science Signaling 5, re7
   Abstract »    Full Text »    PDF »
Modified SH2 domain to phototrap and identify phosphotyrosine proteins from subcellular sites within cells.
A. Uezu, H. Okada, H. Murakoshi, C. D. del Vescovo, R. Yasuda, D. Diviani, and S. H. Soderling (2012)
PNAS 109, E2929-E2938
   Abstract »    Full Text »    PDF »
Cardiac mitochondrial matrix and respiratory complex protein phosphorylation.
R. Covian and R. S. Balaban (2012)
Am J Physiol Heart Circ Physiol 303, H940-H966
   Abstract »    Full Text »    PDF »
The Oncogenic Lung Cancer Fusion Kinase CD74-ROS Activates a Novel Invasiveness Pathway through E-Syt1 Phosphorylation.
H. J. Jun, H. Johnson, R. T. Bronson, S. de Feraudy, F. White, and A. Charest (2012)
Cancer Res. 72, 3764-3774
   Abstract »    Full Text »    PDF »
Regulatory Effects of Programmed Cell Death 4 (PDCD4) Protein in Interferon (IFN)-Stimulated Gene Expression and Generation of Type I IFN Responses.
B. Kroczynska, B. Sharma, E. A. Eklund, E. N. Fish, and L. C. Platanias (2012)
Mol. Cell. Biol. 32, 2809-2822
   Abstract »    Full Text »    PDF »
PTMScan Direct: Identification and Quantification of Peptides from Critical Signaling Proteins by Immunoaffinity Enrichment Coupled with LC-MS/MS.
M. P. Stokes, C. L. Farnsworth, A. Moritz, J. C. Silva, X. Jia, K. A. Lee, A. Guo, R. D. Polakiewicz, and M. J. Comb (2012)
Mol. Cell. Proteomics 11, 187-201
   Abstract »    Full Text »    PDF »
LRIG1 Modulates Cancer Cell Sensitivity to Smac Mimetics by Regulating TNF{alpha} Expression and Receptor Tyrosine Kinase Signaling.
L. Bai, D. McEachern, C.-Y. Yang, J. Lu, H. Sun, and S. Wang (2012)
Cancer Res. 72, 1229-1238
   Abstract »    Full Text »    PDF »
Tyrosine Phosphorylation of the G{alpha}-Interacting Protein GIV Promotes Activation of Phosphoinositide 3-Kinase During Cell Migration.
C. Lin, J. Ear, Y. Pavlova, Y. Mittal, I. Kufareva, M. Ghassemian, R. Abagyan, M. Garcia-Marcos, and P. Ghosh (2011)
Science Signaling 4, ra64
   Abstract »    Full Text »    PDF »
Phosphoproteomic Analysis of Salmonella-Infected Cells Identifies Key Kinase Regulators and SopB-Dependent Host Phosphorylation Events.
L. D. Rogers, N. F. Brown, Y. Fang, S. Pelech, and L. J. Foster (2011)
Science Signaling 4, rs9
   Abstract »    Full Text »    PDF »
Ankrd2/ARPP is a novel Akt2 specific substrate and regulates myogenic differentiation upon cellular exposure to H2O2.
V. Cenni, A. Bavelloni, F. Beretti, F. Tagliavini, L. Manzoli, G. Lattanzi, N. M. Maraldi, L. Cocco, and S. Marmiroli (2011)
Mol. Biol. Cell 22, 2946-2956
   Abstract »    Full Text »    PDF »
Combinatorial Treatments That Overcome PDGFR{beta}-Driven Resistance of Melanoma Cells to V600EB-RAF Inhibition.
H. Shi, X. Kong, A. Ribas, and R. S. Lo (2011)
Cancer Res. 71, 5067-5074
   Abstract »    Full Text »    PDF »
Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth.
Q. Sun, X. Chen, J. Ma, H. Peng, F. Wang, X. Zha, Y. Wang, Y. Jing, H. Yang, R. Chen, et al. (2011)
PNAS 108, 4129-4134
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 24 August 2010.
M. J. Comb and A. M. VanHook (2010)
Science Signaling 3, pc17
   Abstract »    Full Text »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882