Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 16 November 2010
Vol. 3, Issue 148, p. ra82
[DOI: 10.1126/scisignal.2001122]


Activation of STIM1-Orai1 Involves an Intramolecular Switching Mechanism

Marek K. Korzeniowski1, Isabel Martín Manjarrés2, Peter Varnai3, and Tamas Balla1*

1 Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
2 Instituto de Biologia y Genetica Molecular, University of Valladolid–Consejo Superior de Investigaciones Científicas, C/Sanz y Forés s/n, 47003 Valladolid, Spain.
3 Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary.

Abstract: Stromal interaction molecule 1 (STIM1) stimulates calcium ion (Ca2+) entry through plasma membrane Orai1 channels in response to decreased Ca2+ concentrations in the endoplasmic reticulum lumen. We identified an acidic motif within the STIM1 coiled-coil region that keeps its Ca2+ activation domain [Ca2+ release–activated Ca2+ (CRAC) activation domain/STIM1-Orai activating region (CAD/SOAR)]—a cytoplasmic region required for its activation of Orai1—inactive. The sequence of the STIM1 acidic motif shows substantial similarity to that of the carboxyl-terminal coiled-coil segment of Orai1, which is the postulated site of interaction with STIM1. Mutations within this acidic region rendered STIM1 constitutively active, whereas mutations within a short basic segment of CAD/SOAR prevented Orai1 activation. We propose that the CAD/SOAR domain is released from an intramolecular clamp during STIM1 activation, allowing the basic segment to activate Orai1 channels. This evolutionarily conserved mechanism of STIM1 activation resembles the regulation of protein kinases by intramolecular silencing through pseudosubstrate binding.

* To whom correspondence should be addressed. E-mail: ballat{at}

Citation: M. K. Korzeniowski, I. M. Manjarrés, P. Varnai, T. Balla, Activation of STIM1-Orai1 Involves an Intramolecular Switching Mechanism. Sci. Signal. 3, ra82 (2010).

Read the Full Text

Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis.
V. Nesin, G. Wiley, M. Kousi, E.-C. Ong, T. Lehmann, D. J. Nicholl, M. Suri, N. Shahrizaila, N. Katsanis, P. M. Gaffney, et al. (2014)
PNAS 111, 4197-4202
   Abstract »    Full Text »    PDF »
The Extended Transmembrane Orai1 N-terminal (ETON) Region Combines Binding Interface and Gate for Orai1 Activation by STIM1.
I. Derler, P. Plenk, M. Fahrner, M. Muik, I. Jardin, R. Schindl, H. J. Gruber, K. Groschner, and C. Romanin (2013)
J. Biol. Chem. 288, 29025-29034
   Abstract »    Full Text »    PDF »
Phosphorylation of STIM1 at ERK1/2 target sites regulates interaction with the microtubule plus-end binding protein EB1.
E. Pozo-Guisado, V. Casas-Rua, P. Tomas-Martin, A. M. Lopez-Guerrero, A. Alvarez-Barrientos, and F. J. Martin-Romero (2013)
J. Cell Sci. 126, 3170-3180
   Abstract »    Full Text »    PDF »
Molecular basis of activation of the arachidonate-regulated Ca2+ (ARC) channel, a store-independent Orai channel, by plasma membrane STIM1.
J. L. Thompson and T. J. Shuttleworth (2013)
J. Physiol. 591, 3507-3523
   Abstract »    Full Text »    PDF »
The STIM1 CTID domain determines access of SARAF to SOAR to regulate Orai1 channel function.
A. Jha, M. Ahuja, J. Maleth, C. M. Moreno, J. P. Yuan, M. S. Kim, and S. Muallem (2013)
J. Cell Biol. 202, 71-79
   Abstract »    Full Text »    PDF »
Intramolecular shielding maintains the ER Ca2+ sensor STIM1 in an inactive conformation.
F. Yu, L. Sun, S. Hubrack, S. Selvaraj, and K. Machaca (2013)
J. Cell Sci. 126, 2401-2410
   Abstract »    Full Text »    PDF »
Orai Channel Pore Properties and Gating by STIM: Implications from the Orai Crystal Structure.
B. S. Rothberg, Y. Wang, and D. L. Gill (2013)
Science Signaling 6, pe9
   Abstract »    Full Text »    PDF »
The endocannabinoid N-arachidonoyl glycine (NAGly) inhibits store-operated Ca2+ entry by preventing STIM1-Orai1 interaction.
A. T. Deak, L. N. Groschner, M. R. Alam, E. Seles, A. I. Bondarenko, W. F. Graier, and R. Malli (2013)
J. Cell Sci. 126, 879-888
   Abstract »    Full Text »    PDF »
Anti-Hepatitis C Virus Activity and Toxicity of Type III Phosphatidylinositol-4-Kinase Beta Inhibitors.
M. J. LaMarche, J. Borawski, A. Bose, C. Capacci-Daniel, R. Colvin, M. Dennehy, J. Ding, M. Dobler, J. Drumm, L. A. Gaither, et al. (2012)
Antimicrob. Agents Chemother. 56, 5149-5156
   Abstract »    Full Text »    PDF »
Orai1, STIM1, and their associating partners.
S. Srikanth and Y. Gwack (2012)
J. Physiol. 590, 4169-4177
   Abstract »    Full Text »    PDF »
Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1).
X. Yang, H. Jin, X. Cai, S. Li, and Y. Shen (2012)
PNAS 109, 5657-5662
   Abstract »    Full Text »    PDF »
cAMP Induces Stromal Interaction Molecule 1 (STIM1) Puncta but neither Orai1 Protein Clustering nor Store-operated Ca2+ Entry (SOCE) in Islet Cells.
G. Tian, A. V. Tepikin, A. Tengholm, and E. Gylfe (2012)
J. Biol. Chem. 287, 9862-9872
   Abstract »    Full Text »    PDF »
Hypoxia-induced Acidosis Uncouples the STIM-Orai Calcium Signaling Complex.
S. Mancarella, Y. Wang, X. Deng, G. Landesberg, R. Scalia, R. A. Panettieri, K. Mallilankaraman, X. D. Tang, M. Madesh, and D. L. Gill (2011)
J. Biol. Chem. 286, 44788-44798
   Abstract »    Full Text »    PDF »
Store-Operated Calcium Channels: New Perspectives on Mechanism and Function.
R. S. Lewis (2011)
Cold Spring Harb Perspect Biol 3, a003970
   Abstract »    Full Text »    PDF »
Local Cytosolic Ca2+ Elevations Are Required for Stromal Interaction Molecule 1 (STIM1) De-oligomerization and Termination of Store-operated Ca2+ Entry.
W.-W. Shen, M. Frieden, and N. Demaurex (2011)
J. Biol. Chem. 286, 36448-36459
   Abstract »    Full Text »    PDF »
Molecular Determinants within N Terminus of Orai3 Protein That Control Channel Activation and Gating.
J. Bergsmann, I. Derler, M. Muik, I. Frischauf, M. Fahrner, P. Pollheimer, C. Schwarzinger, H. J. Gruber, K. Groschner, and C. Romanin (2011)
J. Biol. Chem. 286, 31565-31575
   Abstract »    Full Text »    PDF »
A Cytosolic STIM2 Preprotein Created by Signal Peptide Inefficiency Activates ORAI1 in a Store-independent Manner.
S. J. L. Graham, M. A. Dziadek, and L. S. Johnstone (2011)
J. Biol. Chem. 286, 16174-16185
   Abstract »    Full Text »    PDF »
Unlocking SOAR releases STIM.
J. Y. Kim and S. Muallem (2011)
EMBO J. 30, 1673-1675
   Abstract »    Full Text »    PDF »
STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation.
M. Muik, M. Fahrner, R. Schindl, P. Stathopulos, I. Frischauf, I. Derler, P. Plenk, B. Lackner, K. Groschner, M. Ikura, et al. (2011)
EMBO J. 30, 1678-1689
   Abstract »    Full Text »    PDF »
Calcium Signaling by STIM and Orai: Intimate Coupling Details Revealed.
Y. Wang, X. Deng, and D. L. Gill (2010)
Science Signaling 3, pe42
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882