Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 21 December 2010
Vol. 3, Issue 153, p. rs4
[DOI: 10.1126/scisignal.2001182]


Phosphoproteomic Analysis Reveals Interconnected System-Wide Responses to Perturbations of Kinases and Phosphatases in Yeast

Bernd Bodenmiller1,2*{dagger}, Stefanie Wanka2,3*, Claudine Kraft4, Jörg Urban5, David Campbell6, Patrick G. Pedrioli4{ddagger}, Bertran Gerrits7§, Paola Picotti1, Henry Lam8, Olga Vitek9, Mi-Youn Brusniak6, Bernd Roschitzki7, Chao Zhang10, Kevan M. Shokat10, Ralph Schlapbach7, Alejandro Colman-Lerner11, Garry P. Nolan12, Alexey I. Nesvizhskii13, Matthias Peter4, Robbie Loewith5, Christian von Mering3, and Ruedi Aebersold1,6,14||

1 Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.
2 Zurich PhD Program in Molecular Life Sciences, 8057 Zurich, Switzerland.
3 Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland.
4 Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland.
5 Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland.
6 Institute for Systems Biology, Seattle, WA 98103, USA.
7 Functional Genomics Center Zurich, University Zurich and ETH Zurich, 8057 Zurich, Switzerland.
8 Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
9 Departments of Statistics and Computer Science, Purdue University, West Lafayette, IN 47107, USA.
10 Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158–2280, USA.
11 Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, C1428EHA Buenos Aires, Argentina.
12 Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
13 Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
14 Faculty of Science, University of Zurich, 8057 Zurich, Switzerland.

* These authors contributed equally to this work.

{dagger} Present address: Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.

{ddagger} Present address: Scottish Institute for Cell Signalling, Sir James Black Centre, University of Dundee, Dundee, Scotland DD1 5EH, UK.

§ Present address: Novartis Institute for Biomedical Research, Novartis International AG, CH-4002 Basel, Switzerland.

Abstract: The phosphorylation and dephosphorylation of proteins by kinases and phosphatases constitute an essential regulatory network in eukaryotic cells. This network supports the flow of information from sensors through signaling systems to effector molecules and ultimately drives the phenotype and function of cells, tissues, and organisms. Dysregulation of this process has severe consequences and is one of the main factors in the emergence and progression of diseases, including cancer. Thus, major efforts have been invested in developing specific inhibitors that modulate the activity of individual kinases or phosphatases; however, it has been difficult to assess how such pharmacological interventions would affect the cellular signaling network as a whole. Here, we used label-free, quantitative phosphoproteomics in a systematically perturbed model organism (Saccharomyces cerevisiae) to determine the relationships between 97 kinases, 27 phosphatases, and more than 1000 phosphoproteins. We identified 8814 regulated phosphorylation events, describing the first system-wide protein phosphorylation network in vivo. Our results show that, at steady state, inactivation of most kinases and phosphatases affected large parts of the phosphorylation-modulated signal transduction machinery—and not only the immediate downstream targets. The observed cellular growth phenotype was often well maintained despite the perturbations, arguing for considerable robustness in the system. Our results serve to constrain future models of cellular signaling and reinforce the idea that simple linear representations of signaling pathways might be insufficient for drug development and for describing organismal homeostasis.

|| To whom correspondence should be addressed. E-mail: aebersold{at}

Citation: B. Bodenmiller, S. Wanka, C. Kraft, J. Urban, D. Campbell, P. G. Pedrioli, B. Gerrits, P. Picotti, H. Lam, O. Vitek, M.-Y. Brusniak, B. Roschitzki, C. Zhang, K. M. Shokat, R. Schlapbach, A. Colman-Lerner, G. P. Nolan, A. I. Nesvizhskii, M. Peter, R. Loewith, C. von Mering, R. Aebersold, Phosphoproteomic Analysis Reveals Interconnected System-Wide Responses to Perturbations of Kinases and Phosphatases in Yeast. Sci. Signal. 3, rs4 (2010).

Read the Full Text

The quantitative proteome of a human cell line.
M. Beck, A. Schmidt, J. Malmstroem, M. Claassen, A. Ori, A. Szymborska, F. Herzog, O. Rinner, J. Ellenberg, and R. Aebersold (2014)
Mol Syst Biol 7, 549
   Abstract »    Full Text »    PDF »
Regulation of yeast central metabolism by enzyme phosphorylation.
A. P. Oliveira, C. Ludwig, P. Picotti, M. Kogadeeva, R. Aebersold, and U. Sauer (2014)
Mol Syst Biol 8, 623
   Abstract »    Full Text »    PDF »
Cross-talk between phosphorylation and lysine acetylation in a genome-reduced bacterium.
V. van Noort, J. Seebacher, S. Bader, S. Mohammed, I. Vonkova, M. J. Betts, S. Kuhner, R. Kumar, T. Maier, M. O'Flaherty, et al. (2014)
Mol Syst Biol 8, 571
   Abstract »    Full Text »    PDF »
Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis.
V. Chubukov, M. Uhr, L. Le Chat, R. J. Kleijn, M. Jules, H. Link, S. Aymerich, J. Stelling, and U. Sauer (2014)
Mol Syst Biol 9, 709
   Abstract »    Full Text »    PDF »
Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae.
G. Garipler, N. Mutlu, N. A. Lack, and C. D. Dunn (2014)
PNAS 111, 1473-1478
   Abstract »    Full Text »    PDF »
Status of Large-scale Analysis of Post-translational Modifications by Mass Spectrometry.
J. V. Olsen and M. Mann (2013)
Mol. Cell. Proteomics 12, 3444-3452
   Abstract »    Full Text »    PDF »
Sucrose-induced Receptor Kinase SIRK1 Regulates a Plasma Membrane Aquaporin in Arabidopsis.
X. N. Wu, C. Sanchez Rodriguez, H. Pertl-Obermeyer, G. Obermeyer, and W. X. Schulze (2013)
Mol. Cell. Proteomics 12, 2856-2873
   Abstract »    Full Text »    PDF »
Identification of Direct Tyrosine Kinase Substrates Based on Protein Kinase Assay-Linked Phosphoproteomics.
L. Xue, R. L. Geahlen, and W. A. Tao (2013)
Mol. Cell. Proteomics 12, 2969-2980
   Abstract »    Full Text »    PDF »
PhosphoChain: a novel algorithm to predict kinase and phosphatase networks from high-throughput expression data.
W.-M. Chen, S. A. Danziger, J.-H. Chiang, and J. D. Aitchison (2013)
Bioinformatics 29, 2435-2444
   Abstract »    Full Text »    PDF »
In Scarcity and Abundance: Metabolic Signals Regulating Cell Growth.
S. Saad, M. Peter, and R. Dechant (2013)
Physiology 28, 298-309
   Abstract »    Full Text »    PDF »
Structure-function analysis of the 5' end of yeast U1 snRNA highlights genetic interactions with the Msl5*Mud2 branchpoint-binding complex and other spliceosome assembly factors.
B. Schwer, J. Chang, and S. Shuman (2013)
Nucleic Acids Res. 41, 7485-7500
   Abstract »    Full Text »    PDF »
Structural and Functional Characterization of a Phosphatase Domain within Yeast General Transcription Factor IIIC.
N. M. I. Taylor, S. Glatt, M. L. Hennrich, G. von Scheven, H. Grotsch, C. Fernandez-Tornero, V. Rybin, A.-C. Gavin, P. Kolb, and C. W. Muller (2013)
J. Biol. Chem. 288, 15110-15120
   Abstract »    Full Text »    PDF »
The PhosphoGRID Saccharomyces cerevisiae protein phosphorylation site database: version 2.0 update.
I. Sadowski, B.-J. Breitkreutz, C. Stark, T.-C. Su, M. Dahabieh, S. Raithatha, W. Bernhard, R. Oughtred, K. Dolinski, K. Barreto, et al. (2013)
Database 2013, bat026
   Abstract »    Full Text »    PDF »
Mitochondrial association, protein phosphorylation, and degradation regulate the availability of the active Rab GTPase Ypt11 for mitochondrial inheritance.
A. Lewandowska, J. Macfarlane, and J. M. Shaw (2013)
Mol. Biol. Cell 24, 1185-1195
   Abstract »    Full Text »    PDF »
Response to Hyperosmotic Stress.
H. Saito and F. Posas (2012)
Genetics 192, 289-318
   Abstract »    Full Text »    PDF »
Protein abundance is key to distinguish promiscuous from functional phosphorylation based on evolutionary information.
E. D. Levy, S. W. Michnick, and C. R. Landry (2012)
Phil Trans R Soc B 367, 2594-2606
   Abstract »    Full Text »    PDF »
An N-terminal acidic region of Sgs1 interacts with Rpa70 and recruits Rad53 kinase to stalled forks.
A. M. Hegnauer, N. Hustedt, K. Shimada, B. L. Pike, M. Vogel, P. Amsler, S. M. Rubin, F. van Leeuwen, A. Guenole, H. van Attikum, et al. (2012)
EMBO J. 31, 3768-3783
   Abstract »    Full Text »    PDF »
Phosphoproteomic Analysis of Leukemia Cells under Basal and Drug-treated Conditions Identifies Markers of Kinase Pathway Activation and Mechanisms of Resistance.
M. P. Alcolea, P. Casado, J.-C. Rodriguez-Prados, B. Vanhaesebroeck, and P. R. Cutillas (2012)
Mol. Cell. Proteomics 11, 453-466
   Abstract »    Full Text »    PDF »
Global Detection of Protein Kinase D-dependent Phosphorylation Events in Nocodazole-treated Human Cells.
M. Franz-Wachtel, S. A. Eisler, K. Krug, S. Wahl, A. Carpy, A. Nordheim, K. Pfizenmaier, A. Hausser, and B. Macek (2012)
Mol. Cell. Proteomics 11, 160-170
   Abstract »    Full Text »    PDF »
Computational Approaches for Analyzing Information Flow in Biological Networks.
B. Kholodenko, M. B. Yaffe, and W. Kolch (2012)
Science Signaling 5, re1
   Abstract »    Full Text »    PDF »
Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs.
S. Sharifpoor, D. van Dyk, M. Costanzo, A. Baryshnikova, H. Friesen, A. C. Douglas, J.-Y. Youn, B. VanderSluis, C. L. Myers, B. Papp, et al. (2012)
Genome Res. 22, 791-801
   Abstract »    Full Text »    PDF »
Phosphosite Mapping of P-type Plasma Membrane H+-ATPase in Homologous and Heterologous Environments.
E. L. Rudashevskaya, J. Ye, O. N. Jensen, A. T. Fuglsang, and M. G. Palmgren (2012)
J. Biol. Chem. 287, 4904-4913
   Abstract »    Full Text »    PDF »
Dependence of Chs2 ER export on dephosphorylation by cytoplasmic Cdc14 ensures that septum formation follows mitosis.
C. F. Chin, A. M. Bennett, W. K. Ma, M. C. Hall, and F. M. Yeong (2012)
Mol. Biol. Cell 23, 45-58
   Abstract »    Full Text »    PDF »
Systematic Phosphorylation Analysis of Human Mitotic Protein Complexes.
B. Hegemann, J. R. A. Hutchins, O. Hudecz, M. Novatchkova, J. Rameseder, M. M. Sykora, S. Liu, M. Mazanek, P. Lenart, J.-K. Heriche, et al. (2011)
Science Signaling 4, rs12
   Abstract »    Full Text »    PDF »
Sequence, Structure, and Network Evolution of Protein Phosphorylation.
C. S. H. Tan (2011)
Science Signaling 4, mr6
   Abstract »    Full Text »    PDF »
ResponseNet: revealing signaling and regulatory networks linking genetic and transcriptomic screening data.
A. Lan, I. Y. Smoly, G. Rapaport, S. Lindquist, E. Fraenkel, and E. Yeger-Lotem (2011)
Nucleic Acids Res. 39, W424-W429
   Abstract »    Full Text »    PDF »
Mitotic Substrates of the Kinase Aurora with Roles in Chromatin Regulation Identified Through Quantitative Phosphoproteomics of Fission Yeast.
A. Koch, K. Krug, S. Pengelley, B. Macek, and S. Hauf (2011)
Science Signaling 4, rs6
   Abstract »    Full Text »    PDF »
Network-Based Tools for the Identification of Novel Drug Targets.
I. J. Farkas, T. Korcsmaros, I. A. Kovacs, A. Mihalik, R. Palotai, G. I. Simko, K. Z. Szalay, M. Szalay-Beko, T. Vellai, S. Wang, et al. (2011)
Science Signaling 4, pt3
   Abstract »    Full Text »    PDF »
Setting the Standards for Signal Transduction Research.
J. Saez-Rodriguez, L. G. Alexopoulos, and G. Stolovitzky (2011)
Science Signaling 4, pe10
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 21 December 2010.
B. Bodenmiller, R. Aebersold, and A. M. VanHook (2010)
Science Signaling 3, pc23
   Abstract »    Full Text »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882