Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 8 March 2011
Vol. 4, Issue 163, p. ra13
[DOI: 10.1126/scisignal.2001518]


Ubiquitination of K-Ras Enhances Activation and Facilitates Binding to Select Downstream Effectors

Atsuo T. Sasaki1,2, Arkaitz Carracedo3,4, Jason W. Locasale1,2, Dimitrios Anastasiou1,2, Koh Takeuchi5,6, Emily Rose Kahoud1, Sasson Haviv1, John M. Asara1,7, Pier Paolo Pandolfi3, and Lewis C. Cantley1,2*

1 Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
2 Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
3 Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Division of Genetics, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
4 CIC bioGUNE, Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain.
5 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
6 Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi, Koto, Tokyo 135-0064, Japan.
7 Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.

Abstract: The guanosine triphosphate (GTP)–loaded form of the guanosine triphosphatase (GTPase) Ras initiates multiple signaling pathways by binding to various effectors, such as the kinase Raf and phosphatidylinositol 3-kinase (PI3K). Ras activity is increased by guanine nucleotide exchange factors that stimulate guanosine diphosphate release and GTP loading and is inhibited by GTPase-activating proteins that stimulate GTP hydrolysis. KRAS is the most frequently mutated RAS gene in cancer. Here, we report that monoubiquitination of lysine-147 in the guanine nucleotide–binding motif of wild-type K-Ras could lead to enhanced GTP loading. Furthermore, ubiquitination increased the binding of the oncogenic Gly12Val mutant of K-Ras to the downstream effectors PI3K and Raf. Thus, monoubiquitination could enhance GTP loading on K-Ras and increase its affinity for specific downstream effectors, providing a previously unidentified mechanism for Ras activation.

* To whom correspondence should be addressed. E-mail: lcantley{at}

Citation: A. T. Sasaki, A. Carracedo, J. W. Locasale, D. Anastasiou, K. Takeuchi, E. R. Kahoud, S. Haviv, J. M. Asara, P. P. Pandolfi, L. C. Cantley, Ubiquitination of K-Ras Enhances Activation and Facilitates Binding to Select Downstream Effectors. Sci. Signal. 4, ra13 (2011).

Read the Full Text

Phosphorylation at Ser-181 of Oncogenic KRAS Is Required for Tumor Growth.
C. Barcelo, N. Paco, M. Morell, B. Alvarez-Moya, N. Bota-Rabassedas, M. Jaumot, F. Vilardell, G. Capella, and N. Agell (2014)
Cancer Res. 74, 1190-1199
   Abstract »    Full Text »    PDF »
Degradation of Activated K-Ras Orthologue via K-Ras-specific Lysine Residues Is Required for Cytokinesis.
K. Sumita, H. Yoshino, M. Sasaki, N. Majd, E. R. Kahoud, H. Takahashi, K. Takeuchi, T. Kuroda, S. Lee, P. G. Charest, et al. (2014)
J. Biol. Chem. 289, 3950-3959
   Abstract »    Full Text »    PDF »
Ubiquitylation and activation of a Rab GTPase is promoted by a {beta}2AR-HACE1 complex.
V. Lachance, J. Degrandmaison, S. Marois, M. Robitaille, S. Genier, S. Nadeau, S. Angers, and J.-L. Parent (2014)
J. Cell Sci. 127, 111-123
   Abstract »    Full Text »    PDF »
Differences in the Regulation of K-Ras and H-Ras Isoforms by Monoubiquitination.
R. Baker, E. M. Wilkerson, K. Sumita, D. G. Isom, A. T. Sasaki, H. G. Dohlman, and S. L. Campbell (2013)
J. Biol. Chem. 288, 36856-36862
   Abstract »    Full Text »    PDF »
HDAC6 and SIRT2 Regulate the Acetylation State and Oncogenic Activity of Mutant K-RAS.
M. H. Yang, G. Laurent, A. S. Bause, R. Spang, N. German, M. C. Haigis, and K. M. Haigis (2013)
Mol. Cancer Res. 11, 1072-1077
   Abstract »    Full Text »    PDF »
4-Hydroxytamoxifen Induces Autophagic Death through K-Ras Degradation.
L. Kohli, N. Kaza, T. Coric, S. J. Byer, N. M. Brossier, B. J. Klocke, M.-A. Bjornsti, S. L. Carroll, and K. A. Roth (2013)
Cancer Res. 73, 4395-4405
   Abstract »    Full Text »    PDF »
Ubiquitin System: Direct Effects Join the Signaling.
A. L. Chernorudskiy and M. R. Gainullin (2013)
Science Signaling 6, pe22
   Abstract »    Full Text »    PDF »
Ras Protein/cAMP-dependent Protein Kinase Signaling Is Negatively Regulated by a Deubiquitinating Enzyme, Ubp3, in Yeast.
Y. Li and Y. Wang (2013)
J. Biol. Chem. 288, 11358-11365
   Abstract »    Full Text »    PDF »
Proteomic Analysis of Exosomes from Mutant KRAS Colon Cancer Cells Identifies Intercellular Transfer of Mutant KRAS.
M. Demory Beckler, J. N. Higginbotham, J. L. Franklin, A.-J. Ham, P. J. Halvey, I. E. Imasuen, C. Whitwell, M. Li, D. C. Liebler, and R. J. Coffey (2013)
Mol. Cell. Proteomics 12, 343-355
   Abstract »    Full Text »    PDF »
Regulation of RAS oncogenicity by acetylation.
M. H. Yang, S. Nickerson, E. T. Kim, C. Liot, G. Laurent, R. Spang, M. R. Philips, Y. Shan, D. E. Shaw, D. Bar-Sagi, et al. (2012)
PNAS 109, 10843-10848
   Abstract »    Full Text »    PDF »
Pheromone- and RSP5-dependent Ubiquitination of the G Protein {beta} Subunit Ste4 in Yeast.
M. Zhu, M. P. Torres, J. B. Kelley, H. G. Dohlman, and Y. Wang (2011)
J. Biol. Chem. 286, 27147-27155
   Abstract »    Full Text »    PDF »
Ubiquitin on Ras: Warden or Partner in Crime?.
C. M. Pfleger (2011)
Science Signaling 4, pe12
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882