Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 25 October 2011
Vol. 4, Issue 196, p. ra70
[DOI: 10.1126/scisignal.2002278]


Regulation of Insulin-Like Growth Factor Signaling by Yap Governs Cardiomyocyte Proliferation and Embryonic Heart Size

Mei Xin1, Yuri Kim1, Lillian B. Sutherland1, Xiaoxia Qi1, John McAnally1, Robert J. Schwartz2,3, James A. Richardson1,4, Rhonda Bassel-Duby1, and Eric N. Olson1*

1 Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390–9148, USA.
2 Texas Heart Institute, Texas Medical Center, Houston, TX 77030, USA.
3 Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA.
4 Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390–9148, USA.

Abstract: The Hippo signaling pathway regulates growth of the heart and other tissues. Hippo pathway kinases influence the activity of various targets, including the transcriptional coactivator Yap, but the specific role of Yap in heart growth has not been investigated. We show that Yap is necessary and sufficient for embryonic cardiac growth in mice. Deletion of Yap in the embryonic mouse heart impeded cardiomyocyte proliferation, causing myocardial hypoplasia and lethality at embryonic stage 10.5. Conversely, forced expression of a constitutively active form of Yap in the embryonic heart increased cardiomyocyte number and heart size. Yap activated the insulin-like growth factor (IGF) signaling pathway in cardiomyocytes, resulting in inactivation of glycogen synthase kinase 3β, which led to increased abundance of β-catenin, a positive regulator of cardiac growth. Our results point to Yap as a critical downstream effector of the Hippo pathway in the control of cardiomyocyte proliferation and a nexus for coupling the IGF, Wnt, and Hippo signaling pathways with the developmental program for heart growth.

* To whom correspondence should be addressed. E-mail: eric.olson{at}

Citation: M. Xin, Y. Kim, L. B. Sutherland, X. Qi, J. McAnally, R. J. Schwartz, J. A. Richardson, R. Bassel-Duby, E. N. Olson, Regulation of Insulin-Like Growth Factor Signaling by Yap Governs Cardiomyocyte Proliferation and Embryonic Heart Size. Sci. Signal. 4, ra70 (2011).

Read the Full Text

Extra- and intracellular factors regulating cardiomyocyte proliferation in postnatal life.
S. Zacchigna and M. Giacca (2014)
Cardiovasc Res 102, 312-320
   Abstract »    Full Text »    PDF »
The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease.
X. Varelas (2014)
Development 141, 1614-1626
   Abstract »    Full Text »    PDF »
Deletion of Yes-Associated Protein (YAP) Specifically in Cardiac and Vascular Smooth Muscle Cells Reveals a Crucial Role for YAP in Mouse Cardiovascular Development.
Y. Wang, G. Hu, F. Liu, X. Wang, M. Wu, J. J. Schwarz, and J. Zhou (2014)
Circ. Res. 114, 957-965
   Abstract »    Full Text »    PDF »
Oxford and the Savannah: Can the Hippo Provide an Explanation for Peto's Paradox?.
F. C. Kelleher and H. O'Sullivan (2014)
Clin. Cancer Res. 20, 557-564
   Abstract »    Full Text »    PDF »
The Hippo Pathway Is Activated and Is a Causal Mechanism for Adipogenesis in Arrhythmogenic Cardiomyopathy.
S. N. Chen, P. Gurha, R. Lombardi, A. Ruggiero, J. T. Willerson, and A. J. Marian (2014)
Circ. Res. 114, 454-468
   Abstract »    Full Text »    PDF »
Hippo Activation in Arrhythmogenic Cardiomyopathy.
Y. Hu and W. T. Pu (2014)
Circ. Res. 114, 402-405
   Full Text »    PDF »
Hippo signaling impedes adult heart regeneration.
T. Heallen, Y. Morikawa, J. Leach, G. Tao, J. T. Willerson, R. L. Johnson, and J. F. Martin (2013)
Development 140, 4683-4690
   Abstract »    Full Text »    PDF »
Hippo pathway effector Yap promotes cardiac regeneration.
M. Xin, Y. Kim, L. B. Sutherland, M. Murakami, X. Qi, J. McAnally, E. R. Porrello, A. I. Mahmoud, W. Tan, J. M. Shelton, et al. (2013)
PNAS 110, 13839-13844
   Abstract »    Full Text »    PDF »
Tumor suppressor Nf2 limits expansion of the neural progenitor pool by inhibiting Yap/Taz transcriptional coactivators.
A. Lavado, Y. He, J. Pare, G. Neale, E. N. Olson, M. Giovannini, and X. Cao (2013)
Development 140, 3323-3334
   Abstract »    Full Text »    PDF »
C3orf58, a Novel Paracrine Protein, Stimulates Cardiomyocyte Cell-Cycle Progression Through the PI3K-AKT-CDK7 Pathway.
F. Beigi, J. Schmeckpeper, P. Pow-anpongkul, J. A. Payne, L. Zhang, Z. Zhang, J. Huang, M. Mirotsou, and V. J. Dzau (2013)
Circ. Res. 113, 372-380
   Abstract »    Full Text »    PDF »
Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1.
R. Fan, N.-G. Kim, and B. M. Gumbiner (2013)
PNAS 110, 2569-2574
   Abstract »    Full Text »    PDF »
Yes-associated Protein Isoform 1 (Yap1) Promotes Cardiomyocyte Survival and Growth to Protect against Myocardial Ischemic Injury.
D. P. Del Re, Y. Yang, N. Nakano, J. Cho, P. Zhai, T. Yamamoto, N. Zhang, N. Yabuta, H. Nojima, D. Pan, et al. (2013)
J. Biol. Chem. 288, 3977-3988
   Abstract »    Full Text »    PDF »
Intersection of Hippo/YAP and Wnt/{beta}-catenin signaling pathways.
W. M. Konsavage Jr and G. S. Yochum (2013)
Acta Biochim Biophys Sin 45, 71-79
   Abstract »    Full Text »    PDF »
In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration.
W.-Y. Choi, M. Gemberling, J. Wang, J. E. Holdway, M.-C. Shen, R. O. Karlstrom, and K. D. Poss (2013)
Development 140, 660-666
   Abstract »    Full Text »    PDF »
FoxO1 and FoxM1 Transcription Factors Have Antagonistic Functions in Neonatal Cardiomyocyte Cell-Cycle Withdrawal and IGF1 Gene Regulation.
A. Sengupta, V. V. Kalinichenko, and K. E. Yutzey (2013)
Circ. Res. 112, 267-277
   Abstract »    Full Text »    PDF »
Cardiac Regeneration.
A. Rosenzweig (2012)
Science 338, 1549-1550
   Abstract »    Full Text »    PDF »
14-3-3{varepsilon} Plays a Role in Cardiac Ventricular Compaction by Regulating the Cardiomyocyte Cell Cycle.
Y. Kosaka, K. A. Cieslik, L. Li, G. Lezin, C. T. Maguire, Y. Saijoh, K. Toyo-oka, M. J. Gambello, M. Vatta, A. Wynshaw-Boris, et al. (2012)
Mol. Cell. Biol. 32, 5089-5102
   Abstract »    Full Text »    PDF »
Yap1 Protein Regulates Vascular Smooth Muscle Cell Phenotypic Switch by Interaction with Myocardin.
C. Xie, Y. Guo, T. Zhu, J. Zhang, P. X. Ma, and Y. E. Chen (2012)
J. Biol. Chem. 287, 14598-14605
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882