Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 31 January 2012
Vol. 5, Issue 209, p. ra9
[DOI: 10.1126/scisignal.2002435]


PAS Kinase Promotes Cell Survival and Growth Through Activation of Rho1

Caleb M. Cardon1, Thomas Beck1,2*, Michael N. Hall2, and Jared Rutter1{dagger}

1 Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
2 Department of Biochemistry, Biozentrum, University of Basel, CH-4046 Basel, Switzerland.

* Present address: Nestlé (Nestec Ltd.), Avenue Reller 22, 1800 Vevey, Switzerland.

Abstract: In Saccharomyces cerevisiae, phosphorylation of Ugp1 by either of the yeast PASK family protein kinases (yPASK), Psk1 or Psk2, directs this metabolic enzyme to deliver glucose to the periphery for synthesis of the cell wall. However, we isolated PSK1 and PSK2 in a high-copy suppressor screen of a temperature-sensitive mutant of target of rapamycin 2 (TOR2). Posttranslational activation of yPASK, either by cell integrity stress or by growth on nonfermentative carbon sources, also suppressed the growth defect resulting from tor2 mutation. Although suppression of the tor2 mutant growth phenotype by activation of the kinase activity of yPASK required phosphorylation of the metabolic enzyme Ugp1 on serine 11, this resulted in the formation of a complex that induced Rho1 activation, rather than required the glucose partitioning function of Ugp1. In addition to phosphorylated Ugp1, this complex contained Rom2, a Rho1 guanine nucleotide exchange factor, and Ssd1, an mRNA-binding protein. Activation of yPASK-dependent Ugp1 phosphorylation, therefore, enables two processes that are required for cell growth and stress resistance: synthesis of the cell wall through partitioning glucose to the periphery and the formation of the signaling complex with Rom2 and Ssd1 to promote Rho1-dependent polarized cell growth. This complex may integrate metabolic and signaling responses required for cell growth and survival in suboptimal conditions.

{dagger} To whom correspondence should be addressed. E-mail: rutter{at}

Citation: C. M. Cardon, T. Beck, M. N. Hall, J. Rutter, PAS Kinase Promotes Cell Survival and Growth Through Activation of Rho1. Sci. Signal. 5, ra9 (2012).

Read the Full Text

Science Signaling Podcast: 31 January 2012.
C. M. Cardon, J. Rutter, and A. M. VanHook (2012)
Science Signaling 5, pc2
   Abstract »    Full Text »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882