Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 28 August 2012
Vol. 5, Issue 239, p. ra63
[DOI: 10.1126/scisignal.2002922]

RESEARCH ARTICLES

The Complex of G Protein Regulator RGS9-2 and Gβ5 Controls Sensitization and Signaling Kinetics of Type 5 Adenylyl Cyclase in the Striatum

Keqiang Xie1, Ikuo Masuho1, Cameron Brand2, Carmen W. Dessauer2, and Kirill A. Martemyanov1*

1 Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
2 Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX 77225, USA.

Abstract: Multiple neurotransmitter systems in the striatum converge to regulate the excitability of striatal neurons by activating several heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors (GPCRs) that signal to the type 5 adenylyl cyclase (AC5), the key effector enzyme that produces the intracellular second messenger cyclic adenosine monophosphate (cAMP). Plasticity of cAMP signaling in the striatum is thought to play an essential role in the development of drug addiction. We showed that the complex of the ninth regulator of G protein signaling (RGS9-2) with the G protein β subunit (Gβ5) critically controlled signaling from dopamine and opioid GPCRs to AC5 in the striatum. RGS9-2/Gβ5 directly interacted with and suppressed the basal activity of AC5. In addition, the RGS9-2/Gβ5 complex attenuated the stimulatory action of Gβ{gamma} on AC5 by facilitating the GTPase (guanosine triphosphatase) activity of Gαo, thus promoting the formation of the inactive heterotrimer and inhibiting Gβ{gamma}. Furthermore, by increasing the deactivation rate of Gαi, RGS9-2/Gβ5 facilitated the recovery of AC5 from inhibition. Mice lacking RGS9 showed increased cAMP production and, upon withdrawal from opioid administration, enhanced sensitization of AC5. Our findings establish RGS9-2/Gβ5 complexes as regulators of three key aspects of cAMP signaling: basal activity, sensitization, and temporal kinetics of AC5, thus highlighting the role of this complex in regulating both inhibitory and stimulatory GPCRs that shape cAMP signaling in the striatum.

* To whom correspondence should be addressed. E-mail: kirill{at}scripps.edu

Citation: K. Xie, I. Masuho, C. Brand, C. W. Dessauer, K. A. Martemyanov, The Complex of G Protein Regulator RGS9-2 and Gβ5 Controls Sensitization and Signaling Kinetics of Type 5 Adenylyl Cyclase in the Striatum. Sci. Signal. 5, ra63 (2012).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The Expanding Roles of G{beta}{gamma} Subunits in G Protein-Coupled Receptor Signaling and Drug Action.
S. M. Khan, R. Sleno, S. Gora, P. Zylbergold, J.-P. Laverdure, J.-C. Labbe, G. J. Miller, and T. E. Hebert (2013)
Pharmacol. Rev. 65, 545-577
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882