Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 4 September 2012
Vol. 5, Issue 240, p. ec235
[DOI: 10.1126/scisignal.2003547]


Circadian Biology Modulating the Clock

L. Bryan Ray

Science, Science Signaling, AAAS, Washington, DC 20005, USA

Because of the close association of the circadian clock with a wide range of physiological processes, identification of clock-modulating small molecules may prove useful for the treatment of circadian-related disorders, which include circadian sleep disorders, cardiovascular disease, cancer, and metabolic disease. Hirota et al. screened for chemical compounds that affected the period of the circadian clock in a human osteosarcoma cell line. A carbazole derivative named KL001 appeared to act by inhibiting proteolytic degradation of the cryptochrome proteins, which in turn caused a lengthening of the circadian period. KL001 also inhibited glucagon-induced gluconeogenesis in primary cultures of mouse hepatocytes.

T. Hirota, J. Wook Lee, P. C. St. John, M. Sawa, K. Iwaisako, T. Noguchi, P. Y. Pongsawakul, T. Sonntag, D. K. Welsh, D. A. Brenner, F. J. Doyle III, P. G. Schultz, S. A. Kay, Identification of small molecule activators of cryptochrome. Science 337, 1094–1097 (2012). [Abstract] [Full Text]

Citation: L. B. Ray, Modulating the Clock. Sci. Signal. 5, ec235 (2012).

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882