Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 20 November 2012
Vol. 5, Issue 251, p. ra85
[DOI: 10.1126/scisignal.2003149]


GPRC5B Activates Obesity-Associated Inflammatory Signaling in Adipocytes

Yeon-Jeong Kim, Takamitsu Sano, Takuji Nabetani, Yoshimi Asano, and Yoshio Hirabayashi*

Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan.

Abstract: A genome-wide association study identified a strong correlation between body mass index and the presence of a 21-kb copy number variation upstream of the human GPRC5B gene; however, the functional role of GPRC5B in obesity remains unknown. We report that GPRC5B-deficient mice were protected from diet-induced obesity and insulin resistance because of reduced inflammation in their white adipose tissue. GPRC5B is a lipid raft–associated transmembrane protein that contains multiple phosphorylated residues in its carboxyl terminus. Phosphorylation of GPRC5B by the tyrosine kinase Fyn and the subsequent direct interaction with Fyn through the Fyn Src homology 2 (SH2) domain were critical for the initiation and progression of inflammatory signaling in adipose tissue. We demonstrated that a GPRC5B mutant lacking the direct binding site for Fyn failed to activate a positive feedback loop of nuclear factor {kappa}B–inhibitor of {kappa}B kinase {varepsilon} signaling. These findings suggest that GPRC5B may be a major node in adipose signaling systems linking diet-induced obesity to type 2 diabetes and may open new avenues for therapeutic approaches to diabetic progression.

* To whom correspondence should be addressed. E-mail: hirabaya{at}

Citation: Y.-J. Kim, T. Sano, T. Nabetani, Y. Asano, Y. Hirabayashi, GPRC5B Activates Obesity-Associated Inflammatory Signaling in Adipocytes. Sci. Signal. 5, ra85 (2012).

Read the Full Text

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882