Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 13 August 2013
Vol. 6, Issue 288, p. ra68
[DOI: 10.1126/scisignal.2004008]


Computational Modeling of ERBB2-Amplified Breast Cancer Identifies Combined ErbB2/3 Blockade as Superior to the Combination of MEK and AKT Inhibitors

Daniel C. Kirouac1*{dagger}, Jin Y. Du1{dagger}, Johanna Lahdenranta1{dagger}, Ryan Overland1, Defne Yarar1, Violette Paragas1, Emily Pace1, Charlotte F. McDonagh1, Ulrik B. Nielsen1, and Matthew D. Onsum1,2

1 Merrimack Pharmaceuticals Inc., 1 Kendall Square, Suite B7201, Cambridge, MA 02139, USA.
2 Silver Creek Pharmaceuticals, 409 Illinois Street, San Francisco, CA 94158, USA.

{dagger} These authors contributed equally to this work.

Abstract: Crosstalk and compensatory circuits within cancer signaling networks limit the activity of most targeted therapies. For example, altered signaling in the networks activated by the ErbB family of receptors, particularly in ERBB2-amplified cancers, contributes to drug resistance. We developed a multiscale systems model of signaling networks in ERBB2-amplified breast cancer to quantitatively investigate relationships between biomarkers (markers of network activity) and combination drug efficacy. This model linked ErbB receptor family signaling to breast tumor growth through two kinase cascades: the PI3K/AKT survival pathway and the Ras/MEK/ERK growth and proliferation pathway. The model predicted molecular mechanisms of resistance to individual therapeutics. In particular, ERBB2-amplified breast cancer cells stimulated with the ErbB3 ligand heregulin were resistant to growth arrest induced by inhibitors of AKT and MEK or coapplication of two inhibitors of the receptor ErbB2 [Herceptin (trastuzumab) and Tykerb (lapatinib)]. We used model simulations to predict the response of ErbB2-positive breast cancer xenografts to combination therapies and verified these predictions in mice. Treatment with trastuzumab, lapatinib, and the ErbB3 inhibitor MM-111 was more effective in inhibiting tumor growth than the combination of AKT and MEK inhibitors and even induced tumor regression, indicating that targeting both ErbB3 and ErbB2 may be an improved therapeutic approach for ErbB2-positive breast cancer patients.

* Corresponding author. E-mail: dkirouac{at}

Citation: D. C. Kirouac, J. Y. Du, J. Lahdenranta, R. Overland, D. Yarar, V. Paragas, E. Pace, C. F. McDonagh, U. B. Nielsen, M. D. Onsum, Computational Modeling of ERBB2-Amplified Breast Cancer Identifies Combined ErbB2/3 Blockade as Superior to the Combination of MEK and AKT Inhibitors. Sci. Signal. 6, ra68 (2013).

Read the Full Text

Antagonism of EGFR and HER3 Enhances the Response to Inhibitors of the PI3K-Akt Pathway in Triple-Negative Breast Cancer.
J. J. Tao, P. Castel, N. Radosevic-Robin, M. Elkabets, N. Auricchio, N. Aceto, G. Weitsman, P. Barber, B. Vojnovic, H. Ellis, et al. (2014)
Science Signaling 7, ra29
   Abstract »    Full Text »    PDF »
Role of erbB3 receptors in cancer therapeutic resistance.
Y. Lee, J. Ma, H. Lyu, J. Huang, A. Kim, and B. Liu (2014)
Acta Biochim Biophys Sin 46, 190-198
   Abstract »    Full Text »    PDF »
What Lies Beneath: Looking Beyond Tumor Genetics Shows the Complexity of Signaling Networks Underlying Drug Sensitivity.
V. Quaranta and D. R. Tyson (2013)
Science Signaling 6, pe32
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882