Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. STKE, 2 August 2005
Vol. 2005, Issue 295, p. re8
[DOI: 10.1126/stke.2952005re8]

REVIEWS

TRP Channels in Disease

Bernd Nilius1*, Thomas Voets1, and John Peters1,2

1Department of Physiology Campus Gasthuisberg Katholieke Universiteit Leuven B- Leuven Belgium.
2Neurosciences Institute Division Pathology Neuroscience Ninewells Hospital Medical School University of Dundee Dundee DD SY Scotland UK.

Abstract: The mammalian TRP (transient receptor potential) family consists of six main subfamilies termed the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and TRPA (ankyrin) groups. These subfamilies encompass 28 ion channels that function as diverse cellular sensors. All of the channels are permeable to monovalent cations, and most are also permeable to Ca2+. There are strong indications that TRP channels are involved in many diseases. At this point, four channelopathies have been identified in which a defect in a TRP channel–encoding gene is the direct cause of disease. TRPs are also involved in some systemic diseases because of their role as receptors for irritants, inflammation products, and xenobiotic toxins. Other indications of the involvement of TRPs in several diseases come from correlations between the levels of channel expression and disease symptoms or from the mapping of TRP-encoding genes to susceptible chromosome regions. Finally, the phenotypes of TRP knockout mice and other transgenic models allow a degree of extrapolation to human diseases. We present an overview of current knowledge about the role of TRP channels in human disease and highlight some TRP "suspects" for which a role in disease can be anticipated. An understanding of the genetics of disease may lead to the development of targeted new therapies.

*Corresponding author. E-mail: bernd.nilius{at}med.kuleuven.ac.be

Citation: B. Nilius, T. Voets, J. Peters, TRP Channels in Disease. Sci. STKE 2005, re8 (2005).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Molecular Architecture and Subunit Organization of TRPA1 Ion Channel Revealed by Electron Microscopy.
T. L. Cvetkov, K. W. Huynh, M. R. Cohen, and V. Y. Moiseenkova-Bell (2011)
J. Biol. Chem. 286, 38168-38176
   Abstract »    Full Text »    PDF »
A Cool Channel in Cold Transduction.
R. Latorre, S. Brauchi, R. Madrid, and P. Orio (2011)
Physiology 26, 273-285
   Abstract »    Full Text »    PDF »
Tyrosine phosphorylation-dependent activation of TRPC6 regulated by PLC-{gamma}1 and nephrin: effect of mutations associated with focal segmental glomerulosclerosis.
S. Kanda, Y. Harita, Y. Shibagaki, T. Sekine, T. Igarashi, T. Inoue, and S. Hattori (2011)
Mol. Biol. Cell 22, 1824-1835
   Abstract »    Full Text »    PDF »
TRIP Database: a manually curated database of protein-protein interactions for mammalian TRP channels.
Y.-C. Shin, S.-Y. Shin, I. So, D. Kwon, and J.-H. Jeon (2011)
Nucleic Acids Res. 39, D356-D361
   Abstract »    Full Text »    PDF »
cGMP-Dependent Protein Kinases and cGMP Phosphodiesterases in Nitric Oxide and cGMP Action.
S. H. Francis, J. L. Busch, and J. D. Corbin (2010)
Pharmacol. Rev. 62, 525-563
   Abstract »    Full Text »    PDF »
Evidence for the pathophysiological relevance of TRPA1 receptors in the cardiovascular system in vivo.
G. Pozsgai, J. V. Bodkin, R. Graepel, S. Bevan, D. A. Andersson, and S. D. Brain (2010)
Cardiovasc Res 87, 760-768
   Abstract »    Full Text »    PDF »
P2Y2 receptors mediate ATP-induced resensitization of TRPV1 expressed by kidney projecting sensory neurons.
H. Wang, D. H. Wang, and J. J. Galligan (2010)
Am J Physiol Regulatory Integrative Comp Physiol 298, R1634-R1641
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 19 May 2009.
E. Oancea and A. M. VanHook (2009)
Science Signaling 2, pc9
   Abstract »    Full Text »
Syntaxin 5 regulates the endoplasmic reticulum channel-release properties of polycystin-2.
L. Geng, W. Boehmerle, Y. Maeda, D. Y. Okuhara, X. Tian, Z. Yu, C.-u. Choe, G. I. Anyatonwu, B. E. Ehrlich, and S. Somlo (2008)
PNAS 105, 15920-15925
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 05 August 2008.
N. R. Gough and A. M. VanHook (2008)
Science Signaling 1, pc7
   Abstract »    Full Text »
Functional effects of nonsynonymous polymorphisms in the human TRPV1 gene.
H. Xu, W. Tian, Y. Fu, T. T. Oyama, S. Anderson, and D. M. Cohen (2007)
Am J Physiol Renal Physiol 293, F1865-F1876
   Abstract »    Full Text »    PDF »
Hydromineral Neuroendocrinology: Role of TRPV ion channels in sensory transduction of osmotic stimuli in mammals.
W. Liedtke (2007)
Exp Physiol 92, 507-512
   Abstract »    Full Text »    PDF »
Cyclin-dependent kinase 5 modulates nociceptive signaling through direct phosphorylation of transient receptor potential vanilloid 1.
T. K. Pareek, J. Keller, S. Kesavapany, N. Agarwal, R. Kuner, H. C. Pant, M. J. Iadarola, R. O. Brady, and A. B. Kulkarni (2007)
PNAS 104, 660-665
   Abstract »    Full Text »    PDF »
Transient Receptor Potential Cation Channels in Disease.
B. Nilius, G. Owsianik, T. Voets, and J. A. Peters (2007)
Physiol Rev 87, 165-217
   Abstract »    Full Text »    PDF »
Transient receptor potential vanilloid channels functioning in transduction of osmotic stimuli.
W. Liedtke (2006)
J. Endocrinol. 191, 515-523
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882