Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. STKE, 16 May 2006
Vol. 2006, Issue 335, p. pe21
[DOI: 10.1126/stke.3352006pe21]

PERSPECTIVES

Viral Modulators of Cullin RING Ubiquitin Ligases: Culling the Host Defense

Michele Barry1 and Klaus Früh2*

1Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
2Vaccine and Gene Therapy Institute, Oregon Health and Science University, 505 Northwest 185th Avenue, Beaverton, OR 97006, USA.

Abstract: Cullin RING ubiquitin ligases (CRULs) are found in all eukaryotes and play an essential role in targeting proteins for ubiquitin-mediated destruction, thus regulating a plethora of cellular processes. Viruses manipulate CRULs by redirecting this destruction machinery to eliminate unwanted host cell proteins, thus allowing viruses to slip past host immune barriers. Depending on the host organism, virus-modified CRULs can perform an amazing range of tasks, including the elimination of crucial signal transduction molecules in the human interferon pathway and suppression of virus-induced gene silencing in plants. This Perspective summarizes recent advances in our understanding of how viral proteins manipulate the function of CRULs.

*Corresponding author. E-mail, fruehk{at}ohsu.edu

Citation: M. Barry, K. Früh, Viral Modulators of Cullin RING Ubiquitin Ligases: Culling the Host Defense. Sci. STKE 2006, pe21 (2006).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
CUL4A ubiquitin ligase: a promising drug target for cancer and other human diseases.
P. Sharma and A. Nag (2014)
Open Bio 4, 130217
   Abstract »    Full Text »    PDF »
Building and remodelling Cullin-RING E3 ubiquitin ligases.
J. R. Lydeard, B. A. Schulman, and J. W. Harper (2013)
EMBO Rep. 14, 1050-1061
   Abstract »    Full Text »    PDF »
The Draft Genome and Transcriptome of Panagrellus redivivus Are Shaped by the Harsh Demands of a Free-Living Lifestyle.
J. Srinivasan, A. R. Dillman, M. G. Macchietto, L. Heikkinen, M. Lakso, K. M. Fracchia, I. Antoshechkin, A. Mortazavi, G. Wong, and P. W. Sternberg (2013)
Genetics 193, 1279-1295
   Abstract »    Full Text »    PDF »
Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses.
E. A. White, M. E. Sowa, M. J. A. Tan, S. Jeudy, S. D. Hayes, S. Santha, K. Munger, J. W. Harper, and P. M. Howley (2012)
PNAS 109, E260-E267
   Abstract »    Full Text »    PDF »
Chromatin Dynamics of Gene Activation and Repression in Response to Interferon {alpha} (IFN{alpha}) Reveal New Roles for Phosphorylated and Unphosphorylated Forms of the Transcription Factor STAT2.
B. Testoni, C. Vollenkle, F. Guerrieri, S. Gerbal-Chaloin, G. Blandino, and M. Levrero (2011)
J. Biol. Chem. 286, 20217-20227
   Abstract »    Full Text »    PDF »
HIV-1 Vpr Induces the K48-Linked Polyubiquitination and Proteasomal Degradation of Target Cellular Proteins To Activate ATR and Promote G2 Arrest.
J.-P. Belzile, J. Richard, N. Rougeau, Y. Xiao, and E. A. Cohen (2010)
J. Virol. 84, 3320-3330
   Abstract »    Full Text »    PDF »
A Proteomic Approach To Identify Candidate Substrates of Human Adenovirus E4orf6-E1B55K and Other Viral Cullin-Based E3 Ubiquitin Ligases.
F. Dallaire, P. Blanchette, and P. E. Branton (2009)
J. Virol. 83, 12172-12184
   Abstract »    Full Text »    PDF »
NSs Protein of Rift Valley Fever Virus Induces the Specific Degradation of the Double-Stranded RNA-Dependent Protein Kinase.
M. Habjan, A. Pichlmair, R. M. Elliott, A. K. Overby, T. Glatter, M. Gstaiger, G. Superti-Furga, H. Unger, and F. Weber (2009)
J. Virol. 83, 4365-4375
   Abstract »    Full Text »    PDF »
Orthopoxviruses Require a Functional Ubiquitin-Proteasome System for Productive Replication.
A. Teale, S. Campbell, N. Van Buuren, W. C. Magee, K. Watmough, B. Couturier, R. Shipclark, and M. Barry (2009)
J. Virol. 83, 2099-2108
   Abstract »    Full Text »    PDF »
Ectromelia Virus Encodes a Novel Family of F-Box Proteins That Interact with the SCF Complex.
N. van Buuren, B. Couturier, Y. Xiong, and M. Barry (2008)
J. Virol. 82, 9917-9927
   Abstract »    Full Text »    PDF »
Structural Insight into the Human Immunodeficiency Virus Vif SOCS Box and Its Role in Human E3 Ubiquitin Ligase Assembly.
B. J. Stanley, E. S. Ehrlich, L. Short, Y. Yu, Z. Xiao, X.-F. Yu, and Y. Xiong (2008)
J. Virol. 82, 8656-8663
   Abstract »    Full Text »    PDF »
Cdc34p Ubiquitin-Conjugating Enzyme Is a Component of the Tombusvirus Replicase Complex and Ubiquitinates p33 Replication Protein.
Z. Li, D. Barajas, T. Panavas, D. A. Herbst, and P. D. Nagy (2008)
J. Virol. 82, 6911-6926
   Abstract »    Full Text »    PDF »
Lysine 144, a Ubiquitin Attachment Site in HIV-1 Nef, Is Required for Nef-Mediated CD4 Down-Regulation.
Y.-J. Jin, C. Y. Cai, X. Zhang, and S. J. Burakoff (2008)
J. Immunol. 180, 7878-7886
   Abstract »    Full Text »    PDF »
Sheeppox Virus Kelch-Like Gene SPPV-019 Affects Virus Virulence.
C. A. Balinsky, G. Delhon, C. L. Afonso, G. R. Risatti, M. V. Borca, R. A. French, E. R. Tulman, S. J. Geary, and D. L. Rock (2007)
J. Virol. 81, 11392-11401
   Abstract »    Full Text »    PDF »
A Functional Ubiquitin-Specific Protease Embedded in the Large Tegument Protein (ORF64) of Murine Gammaherpesvirus 68 Is Active during the Course of Infection.
S. Gredmark, C. Schlieker, V. Quesada, E. Spooner, and H. L. Ploegh (2007)
J. Virol. 81, 10300-10309
   Abstract »    Full Text »    PDF »
Human Papillomavirus Type 16 E7 Oncoprotein Associates with the Cullin 2 Ubiquitin Ligase Complex, Which Contributes to Degradation of the Retinoblastoma Tumor Suppressor.
K. Huh, X. Zhou, H. Hayakawa, J.-Y. Cho, T. A. Libermann, J. Jin, J. Wade Harper, and K. Munger (2007)
J. Virol. 81, 9737-9747
   Abstract »    Full Text »    PDF »
Viral Proteomics.
K. L. Maxwell and L. Frappier (2007)
Microbiol. Mol. Biol. Rev. 71, 398-411
   Abstract »    Full Text »    PDF »
Targeting SUMO E1 to Ubiquitin Ligases: A VIRAL STRATEGY TO COUNTERACT SUMOYLATION.
R. Boggio, A. Passafaro, and S. Chiocca (2007)
J. Biol. Chem. 282, 15376-15382
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882