Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Genes & Dev. 14 (10): 1229-1235

Copyright © 2000 by Cold Spring Harbor Laboratory Press.

Vol. 14, No. 10, pp. 1229-1235, May 15, 2000

Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast

Christopher P. Mattison, and Irene M. Ota1

Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 USA

The MAP kinase Hog1 transiently accumulates in the nucleus upon activation. Although Hog1 nuclear export correlates with its dephosphorylation, we find that dephosphorylation is not necessary for export. Unexpectedly, a strain lacking the nuclear protein tyrosine phosphatase, Ptp2, showed decreased Hog1 nuclear retention, while a strain lacking the cytoplasmic Ptp3 showed prolonged Hog1 nuclear accumulation, consistent with Ptp2 being a nuclear tether for Hog1 and Ptp3 being a cytoplasmic anchor. In support of this result PTP2 overexpression sequestered Hog1 in the nucleus while PTP3 overexpression restricted Hog1 to the cytoplasm. Thus, Ptp2 and Ptp3 regulate Hog1 localization by binding Hog1.

[Key Words: Hog1; PTP; dephosphorylation; nuclear and cytoplasmic anchoring]

1 Corresponding author.

GENES & DEVELOPMENT 14:1229-1235 © 2000 by Cold Spring Harbor Laboratory Press  ISSN 0890-9369/00 $5.00

A framework for mapping, visualisation and automatic model creation of signal-transduction networks.
C.-F. Tiger, F. Krause, G. Cedersund, R. Palmer, E. Klipp, S. Hohmann, H. Kitano, and M. Krantz (2014)
Mol Syst Biol 8, 578
   Abstract »    Full Text »    PDF »
Response to Hyperosmotic Stress.
H. Saito and F. Posas (2012)
Genetics 192, 289-318
   Abstract »    Full Text »    PDF »
Vacuolar H+-ATPase Works in Parallel with the HOG Pathway To Adapt Saccharomyces cerevisiae Cells to Osmotic Stress.
S. C. Li, T. T. Diakov, J. M. Rizzo, and P. M. Kane (2012)
Eukaryot. Cell 11, 282-291
   Abstract »    Full Text »    PDF »
Fungal Skn7 Stress Responses and Their Relationship to Virulence.
J. S. Fassler and A. H. West (2011)
Eukaryot. Cell 10, 156-167
   Abstract »    Full Text »    PDF »
The Activity of Yeast Hog1 MAPK Is Required during Endoplasmic Reticulum Stress Induced by Tunicamycin Exposure.
F. Torres-Quiroz, S. Garcia-Marques, R. Coria, F. Randez-Gil, and J. A. Prieto (2010)
J. Biol. Chem. 285, 20088-20096
   Abstract »    Full Text »    PDF »
Late Phase of the Endoplasmic Reticulum Stress Response Pathway Is Regulated by Hog1 MAP Kinase.
A. A. Bicknell, J. Tourtellotte, and M. Niwa (2010)
J. Biol. Chem. 285, 17545-17555
   Abstract »    Full Text »    PDF »
The High Osmotic Response and Cell Wall Integrity Pathways Cooperate to Regulate Transcriptional Responses to Zymolyase-induced Cell Wall Stress in Saccharomyces cerevisiae.
R. Garcia, J. M. Rodriguez-Pena, C. Bermejo, C. Nombela, and J. Arroyo (2009)
J. Biol. Chem. 284, 10901-10911
   Abstract »    Full Text »    PDF »
Signal processing by the HOG MAP kinase pathway.
P. Hersen, M. N. McClean, L. Mahadevan, and S. Ramanathan (2008)
PNAS 105, 7165-7170
   Abstract »    Full Text »    PDF »
Two Adjacent Docking Sites in the Yeast Hog1 Mitogen-Activated Protein (MAP) Kinase Differentially Interact with the Pbs2 MAP Kinase Kinase and the Ptp2 Protein Tyrosine Phosphatase.
Y. Murakami, K. Tatebayashi, and H. Saito (2008)
Mol. Cell. Biol. 28, 2481-2494
   Abstract »    Full Text »    PDF »
Stress-activated Protein Kinase-mediated Down-Regulation of the Cell Integrity Pathway Mitogen-activated Protein Kinase Pmk1p by Protein Phosphatases.
M. Madrid, A. Nunez, T. Soto, J. Vicente-Soler, M. Gacto, and J. Cansado (2007)
Mol. Biol. Cell 18, 4405-4419
   Abstract »    Full Text »    PDF »
Mechanisms Regulating the Protein Kinases of Saccharomyces cerevisiae.
E. M. Rubenstein and M. C. Schmidt (2007)
Eukaryot. Cell 6, 571-583
   Full Text »    PDF »
Nuclear Export of Simian Immunodeficiency Virus Vpx Protein.
P. K. Singhal, P. Rajendra Kumar, M. R. K. Subba Rao, and S. Mahalingam (2006)
J. Virol. 80, 12271-12282
   Abstract »    Full Text »    PDF »
Saccharomyces cerevisiae Hog1 Protein Phosphorylation upon Exposure to Bacterial Endotoxin.
J. M. Marques, R. J. Rodrigues, A. C. de Magalhaes-Sant'Ana, and T. Goncalves (2006)
J. Biol. Chem. 281, 24687-24694
   Abstract »    Full Text »    PDF »
Analysis of Mitogen-Activated Protein Kinase Signaling Specificity in Response to Hyperosmotic Stress: Use of an Analog-Sensitive HOG1 Allele.
P. J. Westfall and J. Thorner (2006)
Eukaryot. Cell 5, 1215-1228
   Abstract »    Full Text »    PDF »
Genomewide Identification of Sko1 Target Promoters Reveals a Regulatory Network That Operates in Response to Osmotic Stress in Saccharomyces cerevisiae.
M. Proft, F. D. Gibbons, M. Copeland, F. P. Roth, and K. Struhl (2005)
Eukaryot. Cell 4, 1343-1352
   Abstract »    Full Text »    PDF »
Role for the Ran Binding Protein, Mog1p, in Saccharomyces cerevisiae SLN1-SKN7 Signal Transduction.
J. M.-Y. Lu, R. J. Deschenes, and J. S. Fassler (2004)
Eukaryot. Cell 3, 1544-1556
   Abstract »    Full Text »    PDF »
Hyperosmotic Stress Induces Rapid Focal Adhesion Kinase Phosphorylation at Tyrosines 397 and 577: ROLE OF Src FAMILY KINASES AND Rho FAMILY GTPases.
J. A. Lunn and E. Rozengurt (2004)
J. Biol. Chem. 279, 45266-45278
   Abstract »    Full Text »    PDF »
Regulation of the Osmoregulatory HOG MAPK Cascade in Yeast.
H. Saito and K. Tatebayashi (2004)
J. Biochem. 136, 267-272
   Abstract »    Full Text »    PDF »
Unique and Redundant Roles for HOG MAPK Pathway Components as Revealed by Whole-Genome Expression Analysis.
S. M. O'Rourke and I. Herskowitz (2004)
Mol. Biol. Cell 15, 532-542
   Abstract »    Full Text »    PDF »
Nbp2 targets the Ptc1-type 2C Ser/Thr phosphatase to the HOG MAPK pathway.
J. Mapes and I. M. Ota (2004)
EMBO J. 23, 302-311
   Abstract »    Full Text »    PDF »
Saccharomyces cerevisiae Histidine Phosphotransferase Ypd1p Shuttles between the Nucleus and Cytoplasm for SLN1-Dependent Phosphorylation of Ssk1p and Skn7p.
J. M.-Y. Lu, R. J. Deschenes, and J. S. Fassler (2003)
Eukaryot. Cell 2, 1304-1314
   Abstract »    Full Text »    PDF »
Effect of the Pheromone-Responsive G{alpha} and Phosphatase Proteins of Saccharomyces cerevisiae on the Subcellular Localization of the Fus3 Mitogen-Activated Protein Kinase.
E. Blackwell, I. M. Halatek, H.-J. N. Kim, A. T. Ellicott, A. A. Obukhov, and D. E. Stone (2003)
Mol. Cell. Biol. 23, 1135-1150
   Abstract »    Full Text »    PDF »
Role of Ptc2 Type 2C Ser/Thr Phosphatase in Yeast High-Osmolarity Glycerol Pathway Inactivation.
C. Young, J. Mapes, J. Hanneman, S. Al-Zarban, and I. Ota (2002)
Eukaryot. Cell 1, 1032-1040
   Abstract »    Full Text »    PDF »
Regulation of the Saccharomyces cerevisiae Slt2 Kinase Pathway by the Stress-inducible Sdp1 Dual Specificity Phosphatase.
J.-S. Hahn and D. J. Thiele (2002)
J. Biol. Chem. 277, 21278-21284
   Abstract »    Full Text »    PDF »
Osmotic Stress Signaling and Osmoadaptation in Yeasts.
S. Hohmann (2002)
Microbiol. Mol. Biol. Rev. 66, 300-372
   Abstract »    Full Text »    PDF »
Drosophila Extracellular Signal-regulated Kinase Involves the Insulin-mediated Proliferation of Schneider Cells.
H.-B. Kwon, S.-H. Kim, S.-E. Kim, I.-H. Jang, Y. Ahn, W.-J. Lee, and K.-Y. Choi (2002)
J. Biol. Chem. 277, 14853-14858
   Abstract »    Full Text »    PDF »
Heat Stress Activates the Yeast High-Osmolarity Glycerol Mitogen-Activated Protein Kinase Pathway, and Protein Tyrosine Phosphatases Are Essential under Heat Stress.
A. Winkler, C. Arkind, C. P. Mattison, A. Burkholder, K. Knoche, and I. Ota (2002)
Eukaryot. Cell 1, 163-173
   Abstract »    Full Text »    PDF »
Prolonged Nuclear Retention of Activated Extracellular Signal-regulated Protein Kinase Promotes Cell Death Generated by Oxidative Toxicity or Proteasome Inhibition in a Neuronal Cell Line.
M. Stanciu and D. B. DeFranco (2002)
J. Biol. Chem. 277, 4010-4017
   Abstract »    Full Text »    PDF »
Nucleocytoplasmic Shuttling of Smad1 Conferred by Its Nuclear Localization and Nuclear Export Signals.
Z. Xiao, N. Watson, C. Rodriguez, and H. F. Lodish (2001)
J. Biol. Chem. 276, 39404-39410
   Abstract »    Full Text »    PDF »
The nucleus, a site for signal termination by sequestration and inactivation of p42/p44 MAP kinases.
V. Volmat, M. Camps, S. Arkinstall, J. Pouyssegur, and P. Lenormand (2001)
J. Cell Sci. 114, 3433-3443
   Abstract »    Full Text »    PDF »
Ptc1, a Type 2C Ser/Thr Phosphatase, Inactivates the HOG Pathway by Dephosphorylating the Mitogen-Activated Protein Kinase Hog1.
J. Warmka, J. Hanneman, J. Lee, D. Amin, and I. Ota (2001)
Mol. Cell. Biol. 21, 51-60
   Abstract »    Full Text »    PDF »
Two Clusters of Residues at the Docking Groove of Mitogen-activated Protein Kinases Differentially Mediate Their Functional Interaction with the Tyrosine Phosphatases PTP-SL and STEP.
C. Tarrega, C. Blanco-Aparicio, J. J. Munoz, and R. Pulido (2002)
J. Biol. Chem. 277, 2629-2636
   Abstract »    Full Text »    PDF »
Regulation of Nuclear Localization during Signaling.
M. S. Cyert (2001)
J. Biol. Chem. 276, 20805-20808
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882