Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Genes & Dev. 14 (16): 2003-2014

Copyright © 2000 by Cold Spring Harbor Laboratory Press.

Vol. 14, No. 16, pp. 2003-2014, August 15, 2000

RESEARCH PAPER
Multiple RGS proteins alter neural G protein signaling to allow C. elegans to rapidly change behavior when fed

Meng-Qiu Dong, Daniel Chase, Georgia A. Patikoglou, and Michael R. Koelle1

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 USA

Regulators of G protein signaling (RGS proteins) inhibit heterotrimeric G protein signaling by activating G protein GTPase activity. Many mammalian RGS proteins are expressed in the brain and can act in vitro on the neural G protein Go, but the biological purpose of this multiplicity of regulators is not clear. We have analyzed all 13 RGS genes in Caenorhabditis elegans and found that three of them influence the aspect of egg-laying behavior controlled by Go signaling. A previously studied RGS protein, EGL-10, affects egg laying under all conditions tested. The other two RGS proteins, RGS-1 and RGS-2, act as Go GTPase activators in vitro but, unlike EGL-10, they do not strongly affect egg laying when worms are allowed to feed constantly. However, rgs-1; rgs-2 double mutants fail to rapidly induce egg-laying behavior when refed after starvation. Thus EGL-10 sets baseline levels of signaling, while RGS-1 and RGS-2 appear to redundantly alter signaling to cause appropriate behavioral responses to food.

[Key Words: RGS protein; heterotrimeric G protein; neurotransmission; C. elegans]


1 Corresponding author.


GENES & DEVELOPMENT 14:2003-2014 © 2000 by Cold Spring Harbor Laboratory Press  ISSN 0890-9369/00 $5.00

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Postsynaptic ERG Potassium Channels Limit Muscle Excitability to Allow Distinct Egg-Laying Behavior States in Caenorhabditis elegans.
K. M. Collins and M. R. Koelle (2013)
J. Neurosci. 33, 761-775
   Abstract »    Full Text »    PDF »
LIN-12/Notch signaling instructs postsynaptic muscle arm development by regulating UNC-40/DCC and MADD-2 in Caenorhabditis elegans.
P. Li, K. M. Collins, M. R. Koelle, and K. Shen (2013)
eLife Sci 2, e00378
   Abstract »    Full Text »    PDF »
AGS-3 Alters Caenorhabditis elegans Behavior after Food Deprivation via RIC-8 Activation of the Neural G Protein G{alpha}o.
C. Hofler and M. R. Koelle (2011)
J. Neurosci. 31, 11553-11562
   Abstract »    Full Text »    PDF »
Caenorhabditis elegans TRPV Channels Function in a Modality-Specific Pathway to Regulate Response to Aberrant Sensory Signaling.
M. J. Ezak, E. Hong, A. Chaparro-Garcia, and D. M. Ferkey (2010)
Genetics 185, 233-244
   Abstract »    Full Text »    PDF »
The Potassium Chloride Cotransporter KCC-2 Coordinates Development of Inhibitory Neurotransmission and Synapse Structure in Caenorhabditis elegans.
J. E. Tanis, A. Bellemer, J. J. Moresco, B. Forbush, and M. R. Koelle (2009)
J. Neurosci. 29, 9943-9954
   Abstract »    Full Text »    PDF »
Regulation of Serotonin Biosynthesis by the G Proteins G{alpha}o and G{alpha}q Controls Serotonin Signaling in Caenorhabditis elegans.
J. E. Tanis, J. J. Moresco, R. A. Lindquist, and M. R. Koelle (2008)
Genetics 178, 157-169
   Abstract »    Full Text »    PDF »
Genome-Scale Analysis Reveals Sst2 as the Principal Regulator of Mating Pheromone Signaling in the Yeast Saccharomyces cerevisiae.
S. A. Chasse, P. Flanary, S. C. Parnell, N. Hao, J. Y. Cha, D. P. Siderovski, and H. G. Dohlman (2006)
Eukaryot. Cell 5, 330-346
   Abstract »    Full Text »    PDF »
Similar Patterns of Mitochondrial Vulnerability and Rescue Induced by Genetic Modification of {alpha}-Synuclein, Parkin, and DJ-1 in Caenorhabditis elegans.
R. Ved, S. Saha, B. Westlund, C. Perier, L. Burnam, A. Sluder, M. Hoener, C. M. P. Rodrigues, A. Alfonso, C. Steer, et al. (2005)
J. Biol. Chem. 280, 42655-42668
   Abstract »    Full Text »    PDF »
Activation of EGL-47, a G{alpha}o-Coupled Receptor, Inhibits Function of Hermaphrodite-Specific Motor Neurons to Regulate Caenorhabditis elegans Egg-Laying Behavior.
J. J. Moresco and M. R. Koelle (2004)
J. Neurosci. 24, 8522-8530
   Abstract »    Full Text »    PDF »
Genetic and Cellular Basis for Acetylcholine Inhibition of Caenorhabditis elegans Egg-Laying Behavior.
I. A. Bany, M.-Q. Dong, and M. R. Koelle (2003)
J. Neurosci. 23, 8060-8069
   Abstract »    Full Text »    PDF »
A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C. elegans.
D. G. Srinivasan, R. M. Fisk, H. Xu, and S. van den Heuvel (2003)
Genes & Dev. 17, 1225-1239
   Abstract »    Full Text »    PDF »
Regulator of G Protein Signaling Z1 (RGSZ1) Interacts with G{alpha}i Subunits and Regulates G{alpha}i-mediated Cell Signaling.
Y. Wang, G. Ho, J. J. Zhang, B. Nieuwenhuijsen, W. Edris, P. K. Chanda, and K. H. Young (2002)
J. Biol. Chem. 277, 48325-48332
   Abstract »    Full Text »    PDF »
An N-terminal Region of Caenorhabditis elegans RGS Proteins EGL-10 and EAT-16 Directs Inhibition of Galpha oVersus Galpha q Signaling.
G. A. Patikoglou and M. R. Koelle (2002)
J. Biol. Chem. 277, 47004-47013
   Abstract »    Full Text »    PDF »
Efficient isolation of targeted Caenorhabditis elegans deletion strains using highly thermostable restriction endonucleases and PCR.
A. Wei, A. Yuan, G. Fawcett, A. Butler, T. Davis, S.-y. Xu, and L. Salkoff (2002)
Nucleic Acids Res. 30, e110
   Abstract »    Full Text »    PDF »
Cellular Regulation of RGS Proteins: Modulators and Integrators of G Protein Signaling.
S. Hollinger and J. R. Hepler (2002)
Pharmacol. Rev. 54, 527-559
   Abstract »    Full Text »    PDF »
The T-box factor MLS-1 acts as a molecular switch during specification of nonstriated muscle in C. elegans.
S. A. Kostas and A. Fire (2002)
Genes & Dev. 16, 257-269
   Abstract »    Full Text »    PDF »
Characterization of a dominant negative C. elegans Twist mutant protein with implications for human Saethre-Chotzen syndrome.
A. K. Corsi, T. M. Brodigan, E. M. Jorgensen, and M. Krause (2002)
Development 129, 2761-2772
   Abstract »    Full Text »    PDF »
Regulation of Distinct Attractive and Aversive Mechanisms Mediating Benzaldehyde Chemotaxis in Caenorhabditis elegans.
W. M. Nuttley, S. Harbinder, and D. van der Kooy (2001)
Learn. Mem. 8, 170-181
   Abstract »    Full Text »    PDF »
Mechanisms Governing Subcellular Localization and Function of Human RGS2.
S. P. Heximer, H. Lim, J. L. Bernard, and K. J. Blumer (2001)
J. Biol. Chem. 276, 14195-14203
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882