Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Genes & Dev. 14 (3): 301-312

Copyright © 2000 by Cold Spring Harbor Laboratory Press.

Vol. 14, No. 3, pp. 301-312, February 1, 2000

c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi

Min Wu,1,2 Timothy J. Hemesath,1,2,3 Clifford M. Takemoto,1,2 Martin A. Horstmann,2 Audrey G. Wells,2 E. Roydon Price,2 Daniel Z. Fisher,4 and David E. Fisher2,5

2 Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115 USA; 3 Decode Genetics, Lynghals 1, Reykjavik 110, Iceland; 4 Department of Cardiology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655 USA

Microphthalmia (Mi) is a bHLHZip transcription factor that is essential for melanocyte development and postnatal function. It is thought to regulate both differentiated features of melanocytes such as pigmentation as well as proliferation/survival, based on phenotypes of mutant mouse alleles. Mi activity is controlled by at least two signaling pathways. Melanocyte-stimulating hormone (MSH) promotes transcription of the Mi gene through cAMP elevation, resulting in sustained Mi up-regulation over many hours. c-Kit signaling up-regulates Mi function through MAP kinase phosphorylation of Mi, thereby recruiting the p300 transcriptional coactivator. The current study reveals that c-Kit signaling triggers two phosphorylation events on Mi, which up-regulate transactivation potential yet simultaneously target Mi for ubiquitin-dependent proteolysis. The specific activation/degradation signals derive from MAPK/ERK targeting of serine 73, whereas serine 409 serves as a substrate for p90 Rsk-1. An unphosphorylatable double mutant at these two residues is at once profoundly stable and transcriptionally inert. These c-Kit-induced phosphorylations couple transactivation to proteasome-mediated degradation. c-Kit signaling thus triggers short-lived Mi activation and net Mi degradation, in contrast to the profoundly increased Mi expression after MSH signaling, potentially explaining the functional diversity of this transcription factor in regulating proliferation, survival, and differentiation in melanocytes.

[Key Words: Microphthalmia; c-Kit; steel factor; MAPK; p90 Rsk; ubiquitin]

1 These authors contributed equally to this work.

5 Corresponding author.

GENES & DEVELOPMENT 14:301-312 © 2000 by Cold Spring Harbor Laboratory Press  ISSN 0890-9369/00 $5.00

The p90 RSK Family Members: Common Functions and Isoform Specificity.
R. Lara, M. J. Seckl, and O. E. Pardo (2013)
Cancer Res. 73, 5301-5308
   Abstract »    Full Text »    PDF »
A RANKL-PKC{beta}-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts.
M. Ferron, C. Settembre, J. Shimazu, J. Lacombe, S. Kato, D. J. Rawlings, A. Ballabio, and G. Karsenty (2013)
Genes & Dev. 27, 955-969
   Abstract »    Full Text »    PDF »
Stem Cell Factor Receptor/c-Kit: From Basic Science to Clinical Implications.
J. Lennartsson and L. Ronnstrand (2012)
Physiol Rev 92, 1619-1649
   Abstract »    Full Text »    PDF »
The Transcription Factor TFEB Links mTORC1 Signaling to Transcriptional Control of Lysosome Homeostasis.
A. Roczniak-Ferguson, C. S. Petit, F. Froehlich, S. Qian, J. Ky, B. Angarola, T. C. Walther, and S. M. Ferguson (2012)
Science Signaling 5, ra42
   Abstract »    Full Text »    PDF »
Arginylation-dependent regulation of a proteolytic product of talin is essential for cell-cell adhesion.
F. Zhang, S. Saha, and A. Kashina (2012)
J. Cell Biol. 197, 819-836
   Abstract »    Full Text »    PDF »
Melanoma: from mutations to medicine.
H. Tsao, L. Chin, L. A. Garraway, and D. E. Fisher (2012)
Genes & Dev. 26, 1131-1155
   Abstract »    Full Text »    PDF »
In Vivo Role of Alternative Splicing and Serine Phosphorylation of the Microphthalmia-Associated Transcription Factor.
J. Debbache, M. Raza Zaidi, S. Davis, T. Guo, K. Bismuth, X. Wang, S. Skuntz, D. Maric, J. Pickel, P. Meltzer, et al. (2012)
Genetics 191, 133-144
   Abstract »    Full Text »    PDF »
Biology and Clinical Relevance of the Micropthalmia Family of Transcription Factors in Human Cancer.
R. Haq and D. E. Fisher (2011)
J. Clin. Oncol. 29, 3474-3482
   Abstract »    Full Text »    PDF »
New Strategies in Metastatic Melanoma: Oncogene-Defined Taxonomy Leads to Therapeutic Advances.
K. T. Flaherty and D. E. Fisher (2011)
Clin. Cancer Res. 17, 4922-4928
   Abstract »    Full Text »    PDF »
KIT signaling regulates MITF expression through miRNAs in normal and malignant mast cell proliferation.
Y.-N. Lee, S. Brandal, P. Noel, E. Wentzel, J. T. Mendell, M. A. McDevitt, R. Kapur, M. Carter, D. D. Metcalfe, and C. M. Takemoto (2011)
Blood 117, 3629-3640
   Abstract »    Full Text »    PDF »
Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases.
M. Cargnello and P. P. Roux (2011)
Microbiol. Mol. Biol. Rev. 75, 50-83
   Abstract »    Full Text »    PDF »
MicroRNA-340-mediated Degradation of Microphthalmia-associated Transcription Factor mRNA Is Inhibited by the Coding Region Determinant-binding Protein.
S. Goswami, R. S. Tarapore, J. J. TeSlaa, Y. Grinblat, V. Setaluri, and V. S. Spiegelman (2010)
J. Biol. Chem. 285, 20532-20540
   Abstract »    Full Text »    PDF »
p38 Regulates Pigmentation via Proteasomal Degradation of Tyrosinase.
B. Bellei, V. Maresca, E. Flori, A. Pitisci, L. Larue, and M. Picardo (2010)
J. Biol. Chem. 285, 7288-7299
   Abstract »    Full Text »    PDF »
A genomic screen identifies TYRO3 as a MITF regulator in melanoma.
S. Zhu, H. Wurdak, Y. Wang, A. Galkin, H. Tao, J. Li, C. A. Lyssiotis, F. Yan, B. P. Tu, L. Miraglia, et al. (2009)
PNAS 106, 17025-17030
   Abstract »    Full Text »    PDF »
The Role of MITF Phosphorylation Sites During Coat Color and Eye Development in Mice Analyzed by Bacterial Artificial Chromosome Transgene Rescue.
G. L. Bauer, C. Praetorius, K. Bergsteinsdottir, J. H. Hallsson, B. K. Gisladottir, A. Schepsky, D. A. Swing, T. N. O'Sullivan, H. Arnheiter, K. Bismuth, et al. (2009)
Genetics 183, 581-594
   Abstract »    Full Text »    PDF »
{alpha}MSH and Cyclic AMP Elevating Agents Control Melanosome pH through a Protein Kinase A-independent Mechanism.
Y. Cheli, F. Luciani, M. Khaled, L. Beuret, K. Bille, P. Gounon, J.-P. Ortonne, C. Bertolotto, and R. Ballotti (2009)
J. Biol. Chem. 284, 18699-18706
   Abstract »    Full Text »    PDF »
Epistatic connections between microphthalmia-associated transcription factor and endothelin signaling in Waardenburg syndrome and other pigmentary disorders.
K. Sato-Jin, E. K. Nishimura, E. Akasaka, W. Huber, H. Nakano, A. Miller, J. Du, M. Wu, K. Hanada, D. Sawamura, et al. (2008)
FASEB J 22, 1155-1168
   Abstract »    Full Text »    PDF »
Neurofibromin as a regulator of melanocyte development and differentiation.
G. Diwakar, D. Zhang, S. Jiang, and T. J. Hornyak (2008)
J. Cell Sci. 121, 167-177
   Abstract »    Full Text »    PDF »
An Unstable Targeted Allele of the Mouse Mitf Gene With a High Somatic and Germline Reversion Rate.
K. Bismuth, S. Skuntz, J. H. Hallsson, E. Pak, A. S. Dutra, E. Steingrimsson, and H. Arnheiter (2008)
Genetics 178, 259-272
   Abstract »    Full Text »    PDF »
Microphthalmia-Associated Transcription Factor Gene Amplification in Metastatic Melanoma Is a Prognostic Marker for Patient Survival, But Not a Predictive Marker for Chemosensitivity and Chemotherapy Response.
S. Ugurel, R. Houben, D. Schrama, H. Voigt, M. Zapatka, D. Schadendorf, E. B. Brocker, and J. C. Becker (2007)
Clin. Cancer Res. 13, 6344-6350
   Abstract »    Full Text »    PDF »
Up-regulation of MET Expression by {alpha}-Melanocyte-stimulating Hormone and MITF Allows Hepatocyte Growth Factor to Protect Melanocytes and Melanoma Cells from Apoptosis.
L. Beuret, E. Flori, C. Denoyelle, K. Bille, R. Busca, M. Picardo, C. Bertolotto, and R. Ballotti (2007)
J. Biol. Chem. 282, 14140-14147
   Abstract »    Full Text »    PDF »
The Expression of Clcn7 and Ostm1 in Osteoclasts Is Coregulated by Microphthalmia Transcription Factor.
N. A. Meadows, S. M. Sharma, G. J. Faulkner, M. C. Ostrowski, D. A. Hume, and A. I. Cassady (2007)
J. Biol. Chem. 282, 1891-1904
   Abstract »    Full Text »    PDF »
The Microphthalmia-Associated Transcription Factor Mitf Interacts with {beta}-Catenin To Determine Target Gene Expression.
A. Schepsky, K. Bruser, G. J. Gunnarsson, J. Goodall, J. H. Hallsson, C. R. Goding, E. Steingrimsson, and A. Hecht (2006)
Mol. Cell. Biol. 26, 8914-8927
   Abstract »    Full Text »    PDF »
Role of the Mitogen-Activated Protein Kinase Signaling Pathway in the Regulation of Human Melanocytic Antigen Expression.
M. Kono, I. S. Dunn, P. J. Durda, D. Butera, L. B. Rose, T. J. Haggerty, E. M. Benson, and J. T. Kurnick (2006)
Mol. Cancer Res. 4, 779-792
   Abstract »    Full Text »    PDF »
Malignant melanoma: genetics and therapeutics in the genomic era..
L. Chin, L. A. Garraway, and D. E. Fisher (2006)
Genes & Dev. 20, 2149-2182
   Abstract »    Full Text »    PDF »
Acetylation and MAPK phosphorylation cooperate to regulate the degradation of active GATA-1.
A. Hernandez-Hernandez, P. Ray, G. Litos, M. Ciro, S. Ottolenghi, H. Beug, and J. Boyes (2006)
EMBO J. 25, 3264-3274
   Abstract »    Full Text »    PDF »
The Microphthalmia-associated Transcription Factor Requires SWI/SNF Enzymes to Activate Melanocyte-specific Genes.
I. L. de la Serna, Y. Ohkawa, C. Higashi, C. Dutta, J. Osias, N. Kommajosyula, T. Tachibana, and A. N. Imbalzano (2006)
J. Biol. Chem. 281, 20233-20241
   Abstract »    Full Text »    PDF »
c-Met Expression Is Regulated by Mitf in the Melanocyte Lineage.
G. G. McGill, R. Haq, E. K. Nishimura, and D. E. Fisher (2006)
J. Biol. Chem. 281, 10365-10373
   Abstract »    Full Text »    PDF »
Microphthalmic-Associated Transcription Factor Integrates Melanocyte Biology and Melanoma Progression.
C. Goding and F. L. Meyskens Jr. (2006)
Clin. Cancer Res. 12, 1069-1073
   Full Text »    PDF »
Microphthalmia Transcription Factor as a Molecular Marker for Circulating Tumor Cell Detection in Blood of Melanoma Patients.
K. Koyanagi, S. J. O'Day, R. Gonzalez, K. Lewis, W. A. Robinson, T. T. Amatruda, C. Kuo, H.-J. Wang, R. Milford, D. L. Morton, et al. (2006)
Clin. Cancer Res. 12, 1137-1143
   Abstract »    Full Text »    PDF »
Characterization of an ERK-binding Domain in Microphthalmia-associated Transcription Factor and Differential Inhibition of ERK2-mediated Substrate Phosphorylation.
D. M. Molina, S. Grewal, and L. Bardwell (2005)
J. Biol. Chem. 280, 42051-42060
   Abstract »    Full Text »    PDF »
The cleavage of microphthalmia-associated transcription factor, MITF, by caspases plays an essential role in melanocyte and melanoma cell apoptosis.
L. Larribere, C. Hilmi, M. Khaled, C. Gaggioli, K. Bille, P. Auberger, J. P. Ortonne, R. Ballotti, and C. Bertolotto (2005)
Genes & Dev. 19, 1980-1985
   Abstract »    Full Text »    PDF »
Elevated expression of MITF counteracts B-RAF-stimulated melanocyte and melanoma cell proliferation.
C. Wellbrock and R. Marais (2005)
J. Cell Biol. 170, 703-708
   Abstract »    Full Text »    PDF »
Renal Carcinoma-associated Transcription Factors TFE3 and TFEB Are Leukemia Inhibitory Factor-responsive Transcription Activators of E-cadherin.
C. Huan, D. Sashital, T. Hailemariam, M. L. Kelly, and C. A. J. Roman (2005)
J. Biol. Chem. 280, 30225-30235
   Abstract »    Full Text »    PDF »
Checkpoints of Melanocyte Stem Cell Development.
L. Sommer (2005)
Sci. STKE 2005, pe42
   Abstract »    Full Text »    PDF »
Immunological Trigger of Mast Cells by Monomeric IgE: Effect on Microphthalmia Transcription Factor, STAT3 Network of Interactions.
A. Sonnenblick, C. Levy, and E. Razin (2005)
J. Immunol. 175, 1450-1455
   Abstract »    Full Text »    PDF »
{alpha}-Melanocortin and Endothelin-1 Activate Antiapoptotic Pathways and Reduce DNA Damage in Human Melanocytes.
A. L. Kadekaro, R. Kavanagh, H. Kanto, S. Terzieva, J. Hauser, N. Kobayashi, S. Schwemberger, J. Cornelius, G. Babcock, H. G. Shertzer, et al. (2005)
Cancer Res. 65, 4292-4299
   Abstract »    Full Text »    PDF »
Recruitment of the Extracellular Signal-Regulated Kinase/Ribosomal S6 Kinase Signaling Pathway to the NFATc4 Transcription Activation Complex.
T. T. C. Yang, Q. Xiong, I. A. Graef, G. R. Crabtree, and C.-W. Chow (2005)
Mol. Cell. Biol. 25, 907-920
   Abstract »    Full Text »    PDF »
Sumoylation of MITF and Its Related Family Members TFE3 and TFEB.
A. J. Miller, C. Levy, I. J. Davis, E. Razin, and D. E. Fisher (2005)
J. Biol. Chem. 280, 146-155
   Abstract »    Full Text »    PDF »
"Lineage Addiction" in Human Cancer: Lessons from Integrated Genomics.
Cold Spring Harb Symp Quant Biol 70, 25-34
   Abstract »    PDF »
Interplay between MITF, PIAS3, and STAT3 in Mast Cells and Melanocytes.
A. Sonnenblick, C. Levy, and E. Razin (2004)
Mol. Cell. Biol. 24, 10584-10592
   Abstract »    Full Text »    PDF »
Analysis of the Inheritance of White Spotting and the Evaluation of KIT and EDNRB as Spotting Loci in Dutch Boxer Dogs.
M. A. E. van Hagen, J. van der Kolk, M. A. M. Barendse, S. Imholz, P. A. J. Leegwater, B. W. Knol, and B. A. van Oost (2004)
J. Hered. 95, 526-531
   Abstract »    Full Text »    PDF »
Adenylyl cyclase type VI corrects cardiac sarcoplasmic reticulum calcium uptake defects in cardiomyopathy.
T. Tang, M. H. Gao, D. M. Roth, T. Guo, and H. K. Hammond (2004)
Am J Physiol Heart Circ Physiol 287, H1906-H1912
   Abstract »    Full Text »    PDF »
MAP kinases as structural adaptors and enzymatic activators in transcription complexes.
J. W. Edmunds and L. C. Mahadevan (2004)
J. Cell Sci. 117, 3715-3723
   Abstract »    Full Text »    PDF »
c-kit-Immunopositive vascular progenitor cells populate human coronary in-stent restenosis but not primary atherosclerotic lesions.
B. Hibbert, Y.-X. Chen, and E. R. O'Brien (2004)
Am J Physiol Heart Circ Physiol 287, H518-H524
   Abstract »    Full Text »    PDF »
90-kDa Ribosomal S6 Kinase Is a Direct Target for the Nuclear Fibroblast Growth Factor Receptor 1 (FGFR1): ROLE IN FGFR1 SIGNALING.
Y. Hu, X. Fang, S. M. Dunham, C. Prada, E. K. Stachowiak, and M. K. Stachowiak (2004)
J. Biol. Chem. 279, 29325-29335
   Abstract »    Full Text »    PDF »
ERK and p38 MAPK-Activated Protein Kinases: a Family of Protein Kinases with Diverse Biological Functions.
P. P. Roux and J. Blenis (2004)
Microbiol. Mol. Biol. Rev. 68, 320-344
   Abstract »    Full Text »    PDF »
The Basic Helix-Loop-Helix Leucine Zipper Transcription Factor Mitf Is Conserved in Drosophila and Functions in Eye Development.
J. H. Hallsson, B. S. Haflidadottir, C. Stivers, W. Odenwald, H. Arnheiter, F. Pignoni, and E. Steingrimsson (2004)
Genetics 167, 233-241
   Abstract »    Full Text »    PDF »
Regulation of the MiTF/TFE bHLH-LZ transcription factors through restricted spatial expression and alternative splicing of functional domains.
R. P. Kuiper, M. Schepens, J. Thijssen, E. F. P. M. Schoenmakers, and A. G. van Kessel (2004)
Nucleic Acids Res. 32, 2315-2322
   Abstract »    Full Text »    PDF »
The Brn-2 Transcription Factor Links Activated BRAF to Melanoma Proliferation.
J. Goodall, C. Wellbrock, T. J. Dexter, K. Roberts, R. Marais, and C. R. Goding (2004)
Mol. Cell. Biol. 24, 2923-2931
   Abstract »    Full Text »    PDF »
Pigmentary changes in chronic myeloid leukemia patients treated with imatinib mesylate.
B. Arora, L. Kumar, A. Sharma, J. Wadhwa, and V. Kochupillai (2004)
Ann. Onc. 15, 358-359
   Full Text »    PDF »
Transcriptional Regulation of the Melanoma Prognostic Marker Melastatin (TRPM1) by MITF in Melanocytes and Melanoma.
A. J. Miller, J. Du, S. Rowan, C. L. Hershey, H. R. Widlund, and D. E. Fisher (2004)
Cancer Res. 64, 509-516
   Abstract »    Full Text »    PDF »
Role Played by Microphthalmia Transcription Factor Phosphorylation and Its Zip Domain in Its Transcriptional Inhibition by PIAS3.
C. Levy, A. Sonnenblick, and E. Razin (2003)
Mol. Cell. Biol. 23, 9073-9080
   Abstract »    Full Text »    PDF »
Hair Depigmentation Is a Biological Readout for Pharmacological Inhibition of KIT in Mice and Humans.
K. G. Moss, G. C. Toner, J. M. Cherrington, D. B. Mendel, and A. D. Laird (2003)
J. Pharmacol. Exp. Ther. 307, 476-480
   Abstract »    Full Text »    PDF »
A defect in a novel ADAMTS family member is the cause of the belted white-spotting mutation.
C. Rao, D. Foernzler, S. K. Loftus, S. Liu, J. D. McPherson, K. A. Jungers, S. S. Apte, W. J. Pavan, and D. R. Beier (2003)
Development 130, 4665-4672
   Abstract »    Full Text »    PDF »
BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system.
R. V. Kondratov, M. V. Chernov, A. A. Kondratova, V. Y. Gorbacheva, A. V. Gudkov, and M. P. Antoch (2003)
Genes & Dev. 17, 1921-1932
   Abstract »    Full Text »    PDF »
ERK1/2 Achieves Sustained Activation by Stimulating MAPK Phosphatase-1 Degradation via the Ubiquitin-Proteasome Pathway.
Y.-W. Lin, S.-M. Chuang, and J.-L. Yang (2003)
J. Biol. Chem. 278, 21534-21541
   Abstract »    Full Text »    PDF »
Sphingosine-1-phosphate decreases melanin synthesis via sustained ERK activation and subsequent MITF degradation.
D.-S. Kim, E.-S. Hwang, J.-E. Lee, S.-Y. Kim, S.-B. Kwon, and K.-C. Park (2003)
J. Cell Sci. 116, 1699-1706
   Abstract »    Full Text »    PDF »
The Stability of the Lens-specific Maf Protein is Regulated by Fibroblast Growth Factor (FGF)/ERK Signaling in Lens Fiber Differentiation.
H. Ochi, H. Ogino, Y. Kageyama, and K. Yasuda (2003)
J. Biol. Chem. 278, 537-544
   Abstract »    Full Text »    PDF »
Glycogen Synthase Kinase 3beta Is Activated by cAMP and Plays an Active Role in the Regulation of Melanogenesis.
M. Khaled, L. Larribere, K. Bille, E. Aberdam, J.-P. Ortonne, R. Ballotti, and C. Bertolotto (2002)
J. Biol. Chem. 277, 33690-33697
   Abstract »    Full Text »    PDF »
Coordination of ATF6-mediated Transcription and ATF6 Degradation by a Domain That Is Shared with the Viral Transcription Factor, VP16.
D. J. Thuerauf, L. E. Morrison, H. Hoover, and C. C. Glembotski (2002)
J. Biol. Chem. 277, 20734-20739
   Abstract »    Full Text »    PDF »
Phosphorylation by Mitogen-activated Protein Kinase Mediates the Hypoxia-induced Turnover of the TAL1/SCL Transcription Factor in Endothelial Cells.
T. Tang, J. L. Arbiser, and S. J. Brandt (2002)
J. Biol. Chem. 277, 18365-18372
   Abstract »    Full Text »    PDF »
Activation of p59Fyn Leads to Melanocyte Dedifferentiation by Influencing MKP-1-regulated Mitogen-activated Protein Kinase Signaling.
C. Wellbrock, C. Weisser, E. Geissinger, J. Troppmair, and M. Schartl (2002)
J. Biol. Chem. 277, 6443-6454
   Abstract »    Full Text »    PDF »
Identification of Aim-1 as the underwhite Mouse Mutant and Its Transcriptional Regulation by MITF.
J. Du and D. E. Fisher (2002)
J. Biol. Chem. 277, 402-406
   Abstract »    Full Text »
Characterization of Regulatory Events Associated with Membrane Targeting of p90 Ribosomal S6 Kinase 1.
S. A. Richards, V. C. Dreisbach, L. O. Murphy, and J. Blenis (2001)
Mol. Cell. Biol. 21, 7470-7480
   Abstract »    Full Text »    PDF »
The Usf-1 transcription factor is a novel target for the stress-responsive p38 kinase and mediates UV-induced Tyrosinase expression.
M.-D. Galibert, S. Carreira, and C. R. Goding (2001)
EMBO J. 20, 5022-5031
   Abstract »    Full Text »    PDF »
Nrarp is a novel intracellular component of the Notch signaling pathway.
E. Lamar, G. Deblandre, D. Wettstein, V. Gawantka, N. Pollet, C. Niehrs, and C. Kintner (2001)
Genes & Dev. 15, 1885-1899
   Abstract »    Full Text »    PDF »
Linking osteopetrosis and pycnodysostosis: Regulation of cathepsin K expression by the microphthalmia transcription factor family.
G. Motyckova, K. N. Weilbaecher, M. Horstmann, D. J. Rieman, D. Z. Fisher, and D. E. Fisher (2001)
PNAS 98, 5798-5803
   Abstract »    Full Text »    PDF »
Transcriptional activation: risky business.
W. P. Tansey (2001)
Genes & Dev. 15, 1045-1050
   Abstract »    Full Text »
SCF/c-kit signaling is required for cyclic regeneration of the hair pigmentation unit.
FASEB J 15, 645-658
   Abstract »    Full Text »    PDF »
Micropthalmia Transcription Factor: A New Prognostic Marker in Intermediate-thickness Cutaneous Malignant Melanoma.
G. I. Salti, T. Manougian, M. Farolan, A. Shilkaitis, D. Majumdar, and T. K. Das Gupta (2000)
Cancer Res. 60, 5012-5016
   Abstract »    Full Text »
The Gene Encoding the T-box Factor Tbx2 Is a Target for the Microphthalmia-associated Transcription Factor in Melanocytes.
S. Carreira, B. Liu, and C. R. Goding (2000)
J. Biol. Chem. 275, 21920-21927
   Abstract »    Full Text »    PDF »
Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage.
C. R. Goding (2000)
Genes & Dev. 14, 1712-1728
   Full Text »
Signaling and transcriptional regulation in the neural crest-derived melanocyte lineage: interactions between KIT and MITF.
L Hou, J. Panthier, and H Arnheiter (2000)
Development 127, 5379-5389
   Abstract »    PDF »
The gene encoding the T-box factor Tbx2 is a target for the Microphthalmia-associated transcription factor in melanocytes.
S. Carreira, B. Liu, and C. R Goding (2000)
J. Biol. Chem.
   Abstract »
Genetic and Physical Interactions between Microphthalmia Transcription Factor and PU.1 Are Necessary for Osteoclast Gene Expression and Differentiation.
A. Luchin, S. Suchting, T. Merson, T. J. Rosol, D. A. Hume, A. I. Cassady, and M. C. Ostrowski (2001)
J. Biol. Chem. 276, 36703-36710
   Abstract »    Full Text »    PDF »
Linking osteopetrosis and pycnodysostosis: Regulation of cathepsin K expression by the microphthalmia transcription factor family.
G. Motyckova, K. N. Weilbaecher, M. Horstmann, D. J. Rieman, D. Z. Fisher, and D. E. Fisher (2001)
PNAS 98, 5798-5803
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882