Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Genes & Dev. 14 (4): 422-434

Copyright © 2000 by Cold Spring Harbor Laboratory Press.

Vol. 14, No. 4, pp. 422-434, February 15, 2000

RESEARCH PAPER
The p23 molecular chaperones act at a late step in intracellular receptor action to differentially affect ligand efficacies

Brian C. Freeman,1 Sara J. Felts,2 David O. Toft,2 and Keith R. Yamamoto1,3

1 Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143-0450 USA; 2 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905 USA

Multiple molecular chaperones, including Hsp90 and p23, interact with members of the intracellular receptor (IR) family. To investigate p23 function, we compared the effects of three p23 proteins on IR activities, yeast p23 (sba1p) and the two human p23 homologs, p23 and tsp23. We found that Sba1p was indistinguishable from human p23 in assays of seven IR activities in both animal cells and in yeast; in contrast, certain effects of tsp23 were specific to that homolog. Transcriptional activation by two IRs was increased by expression of any of the p23 species, whereas activation by five other IRs was decreased by Sba1p or p23, and unaffected by tsp23. p23 was expressed in all tissues examined except striated and cardiac muscle, whereas tsp23 accumulated in a complementary pattern; hence, p23 proteins might contribute to tissue-specific differences in IR activities. Unlike Hsp90, which acts on IR aporeceptors to stimulate ligand potency (i.e., hormone-binding affinity), p23 proteins acted on IR holoreceptors to alter ligand efficiencies (i.e., transcriptional activation activity). Moreover, the p23 effects developed slowly, requiring prolonged exposure to hormone. In vitro, p23 interacted preferentially with hormone-receptor-response element ternary complexes, and stimulated receptor-DNA dissociation. The dissociation was reversed by addition of a fragment of the GRIP1 coactivator, suggesting that the two reactions may be in competition in vivo. Our findings suggest that p23 functions at one or more late steps in IR-mediated signal transduction, perhaps including receptor recycling and/or reversal of the response.

[Key Words: intracellular receptor; ligand efficacy; molecular chaperone; p23]


3 Corresponding author.


GENES & DEVELOPMENT 14:422-434 © 2000 by Cold Spring Harbor Laboratory Press  ISSN 0890-9369/00 $5.00

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop.
A. B. Schmid, S. Lagleder, M. A. Grawert, A. Rohl, F. Hagn, S. K. Wandinger, M. B. Cox, O. Demmer, K. Richter, M. Groll, et al. (2012)
EMBO J. 31, 1506-1517
   Abstract »    Full Text »    PDF »
Regulation of Androgen Receptor-Mediated Transcription by RPB5 Binding Protein URI/RMP.
P. Mita, J. N. Savas, N. Djouder, J. R. Yates III, S. Ha, R. Ruoff, E. D. Schafler, J. C. Nwachukwu, N. Tanese, N. J. Cowan, et al. (2011)
Mol. Cell. Biol. 31, 3639-3652
   Abstract »    Full Text »    PDF »
AIP and its interacting partners.
G. Trivellin and M. Korbonits (2011)
J. Endocrinol. 210, 137-155
   Abstract »    Full Text »    PDF »
High Levels of Hsp90 Cochaperone p23 Promote Tumor Progression and Poor Prognosis in Breast Cancer by Increasing Lymph Node Metastases and Drug Resistance.
N. E. Simpson, W. M. Lambert, R. Watkins, S. Giashuddin, S. J. Huang, E. Oxelmark, R. Arju, T. Hochman, J. D. Goldberg, R. J. Schneider, et al. (2010)
Cancer Res. 70, 8446-8456
   Abstract »    Full Text »    PDF »
A Truncated Form of p23 Down-regulates Telomerase Activity via Disruption of Hsp90 Function.
S. H. Woo, S. An, H.-C. Lee, H.-O. Jin, S.-K. Seo, D.-H. Yoo, K.-H. Lee, C. H. Rhee, E.-J. Choi, S.-I. Hong, et al. (2009)
J. Biol. Chem. 284, 30871-30880
   Abstract »    Full Text »    PDF »
Cochaperone Activity of Human Butyrate-Induced Transcript 1 Facilitates Hepatitis C Virus Replication through an Hsp90-Dependent Pathway.
S. Taguwa, H. Kambara, H. Omori, H. Tani, T. Abe, Y. Mori, T. Suzuki, T. Yoshimori, K. Moriishi, and Y. Matsuura (2009)
J. Virol. 83, 10427-10436
   Abstract »    Full Text »    PDF »
p23/Sba1p Protects against Hsp90 Inhibitors Independently of Its Intrinsic Chaperone Activity.
F. Forafonov, O. A. Toogun, I. Grad, E. Suslova, B. C. Freeman, and D. Picard (2008)
Mol. Cell. Biol. 28, 3446-3456
   Abstract »    Full Text »    PDF »
The Heat Shock Protein 70 Cochaperone YDJ1 Is Required for Efficient Membrane-Specific Flock House Virus RNA Replication Complex Assembly and Function in Saccharomyces cerevisiae.
S. A. Weeks and D. J. Miller (2008)
J. Virol. 82, 2004-2012
   Abstract »    Full Text »    PDF »
The Ligand Binding Domain Controls Glucocorticoid Receptor Dynamics Independent of Ligand Release.
S. H. Meijsing, C. Elbi, H. F. Luecke, G. L. Hager, and K. R. Yamamoto (2007)
Mol. Cell. Biol. 27, 2442-2451
   Abstract »    Full Text »    PDF »
A duplexed phenotypic screen for the simultaneous detection of inhibitors of the molecular chaperone heat shock protein 90 and modulators of cellular acetylation.
A. Hardcastle, P. Tomlin, C. Norris, J. Richards, M. Cordwell, K. Boxall, M. Rowlands, K. Jones, I. Collins, E. McDonald, et al. (2007)
Mol. Cancer Ther. 6, 1112-1122
   Abstract »    Full Text »    PDF »
Unliganded and hormone-bound glucocorticoid receptors interact with distinct hydrophobic sites in the Hsp90 C-terminal domain.
L. Fang, D. Ricketson, L. Getubig, and B. Darimont (2006)
PNAS 103, 18487-18492
   Abstract »    Full Text »    PDF »
The Hsp90 Cochaperone p23 Is Essential for Perinatal Survival.
I. Grad, T. A. McKee, S. M. Ludwig, G. W. Hoyle, P. Ruiz, W. Wurst, T. Floss, C. A. Miller III, and D. Picard (2006)
Mol. Cell. Biol. 26, 8976-8983
   Abstract »    Full Text »    PDF »
Prenatal Estrogen Exposure Differentially Affects Estrogen Receptor-Associated Proteins in Rat Testis Gonocytes.
Y. Wang, R. Thuillier, and M. Culty (2004)
Biol Reprod 71, 1652-1664
   Abstract »    Full Text »    PDF »
The Aryl Hydrocarbon (Ah) Receptor Transcriptional Regulator Hepatitis B Virus X-associated Protein 2 Antagonizes p23 Binding to Ah Receptor-Hsp90 Complexes and Is Dispensable for Receptor Function.
B. D. Hollingshead, J. R. Petrulis, and G. H. Perdew (2004)
J. Biol. Chem. 279, 45652-45661
   Abstract »    Full Text »    PDF »
Importin 7 and Importin {alpha}/Importin {beta} Are Nuclear Import Receptors for the Glucocorticoid Receptor.
N. D. Freedman and K. R. Yamamoto (2004)
Mol. Biol. Cell 15, 2276-2286
   Abstract »    Full Text »    PDF »
Progesterone Receptor Deficient in Chromatin Binding Has an Altered Cellular State.
J. Botos, W. Xian, D. F. Smith, and C. L. Smith (2004)
J. Biol. Chem. 279, 15231-15239
   Abstract »    Full Text »    PDF »
The Cochaperone Bag-1L Enhances Androgen Receptor Action via Interaction with the NH2-Terminal Region of the Receptor.
L. Shatkina, S. Mink, H. Rogatsch, H. Klocker, G. Langer, A. Nestl, and A. C. B. Cato (2003)
Mol. Cell. Biol. 23, 7189-7197
   Abstract »    Full Text »    PDF »
Nuclear Export of the Glucocorticoid Receptor Is Accelerated by Cell Fusion-dependent Release of Calreticulin.
R. F. Walther, C. Lamprecht, A. Ridsdale, I. Groulx, S. Lee, Y. A. Lefebvre, and R. J. G. Hache (2003)
J. Biol. Chem. 278, 37858-37864
   Abstract »    Full Text »    PDF »
Genetic Dissection of p23, an Hsp90 Cochaperone, Reveals a Distinct Surface Involved in Estrogen Receptor Signaling.
E. Oxelmark, R. Knoblauch, S. Arnal, L. F. Su, M. Schapira, and M. J. Garabedian (2003)
J. Biol. Chem. 278, 36547-36555
   Abstract »    Full Text »    PDF »
The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo.
D. L. Riggs, P. J. Roberts, S. C. Chirillo, J. Cheung-Flynn, V. Prapapanich, T. Ratajczak, R. Gaber, D. Picard, and D. F. Smith (2003)
EMBO J. 22, 1158-1167
   Abstract »    Full Text »    PDF »
Essential Role of the Unusual DNA-binding Motif of BAG-1 for Inhibition of the Glucocorticoid Receptor.
U. Schmidt, G. M. Wochnik, M. C. Rosenhagen, J. C. Young, F. U. Hartl, F. Holsboer, and T. Rein (2003)
J. Biol. Chem. 278, 4926-4931
   Abstract »    Full Text »    PDF »
Regulation of Signaling Protein Function and Trafficking by the hsp90/hsp70-Based Chaperone Machinery.
W. B. Pratt and D. O. Toft (2003)
Experimental Biology and Medicine 228, 111-133
   Abstract »    Full Text »    PDF »
The Influence of ATP and p23 on the Conformation of hsp90.
W. P. Sullivan, B. A. L. Owen, and D. O. Toft (2002)
J. Biol. Chem. 277, 45942-45948
   Abstract »    Full Text »    PDF »
Disassembly of Transcriptional Regulatory Complexes by Molecular Chaperones.
B. C. Freeman and K. R. Yamamoto (2002)
Science 296, 2232-2235
   Abstract »    Full Text »    PDF »
Up-regulation of Prostaglandin E2 Synthesis by Interleukin-1{beta} in Human Orbital Fibroblasts Involves Coordinate Induction of Prostaglandin-Endoperoxide H Synthase-2 and Glutathione-dependent Prostaglandin E2 Synthase Expression.
R. Han, S. Tsui, and T. J. Smith (2002)
J. Biol. Chem. 277, 16355-16364
   Abstract »    Full Text »    PDF »
Hsp104 Interacts with Hsp90 Cochaperones in Respiring Yeast.
T. Abbas-Terki, O. Donze, P.-A. Briand, and D. Picard (2001)
Mol. Cell. Biol. 21, 7569-7575
   Abstract »    Full Text »    PDF »
Hsp90: a specialized but essential protein-folding tool.
J. C. Young, I. Moarefi, and F. U. Hartl (2001)
J. Cell Biol. 154, 267-274
   Abstract »    Full Text »    PDF »
Hsp70-RAP46 interaction in downregulation of DNA binding by glucocorticoid receptor.
J. Schneikert, S. Hubner, G. Langer, T. Petri, M. Jaattela, J. Reed, and A. C. B. Cato (2000)
EMBO J. 19, 6508-6516
   Abstract »    Full Text »    PDF »
Dimerization and N-terminal domain proximity underlie the function of the molecular chaperone heat shock protein 90.
A. Chadli, I. Bouhouche, W. Sullivan, B. Stensgard, N. McMahon, M. G. Catelli, and D. O. Toft (2000)
PNAS 97, 12524-12529
   Abstract »    Full Text »    PDF »
Molecular Identification of Cytosolic Prostaglandin E2 Synthase That Is Functionally Coupled with Cyclooxygenase-1 in Immediate Prostaglandin E2Biosynthesis.
T. Tanioka, Y. Nakatani, N. Semmyo, M. Murakami, and I. Kudo (2000)
J. Biol. Chem. 275, 32775-32782
   Abstract »    Full Text »    PDF »
The glucocorticoid receptor inhibits NFkappa B by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain.
R. M. Nissen and K. R. Yamamoto (2000)
Genes & Dev. 14, 2314-2329
   Abstract »    Full Text »
Steroid Receptor and Molecular Chaperone Encounters in the Nucleus.
D. B. DeFranco and P. Csermely (2000)
Sci. STKE 2000, pe1
   Abstract »    Full Text »    PDF »
Molecular identification of cytosolic prostaglandin E{sub2} synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E{sub2} biosynthesis.
T. Tanioka, Y. Nakatani, N. Semmyo, M. Murakami, and I. Kudo (2000)
J. Biol. Chem.
   Abstract »
Functional Interaction of Human Cdc37 with the Androgen Receptor but Not with the Glucocorticoid Receptor.
J. Rao, P. Lee, S. Benzeno, C. Cardozo, J. Albertus, D. M. Robins, and A. J. Caplan (2001)
J. Biol. Chem. 276, 5814-5820
   Abstract »    Full Text »    PDF »
Identification and Characterization of Harc, a Novel Hsp90-associating Relative of Cdc37.
G. M. Scholz, K. Cartledge, and N. E. Hall (2001)
J. Biol. Chem. 276, 30971-30979
   Abstract »    Full Text »    PDF »
Allosteric Effects of Dexamethasone and RU486 on Glucocorticoid Receptor-DNA Interactions.
S. Pandit, W. Geissler, G. Harris, and A. Sitlani (2002)
J. Biol. Chem. 277, 1538-1543
   Abstract »    Full Text »    PDF »
Dimerization and N-terminal domain proximity underlie the function of the molecular chaperone heat shock protein 90.
A. Chadli, I. Bouhouche, W. Sullivan, B. Stensgard, N. McMahon, M. G. Catelli, and D. O. Toft (2000)
PNAS 97, 12524-12529
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882