Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Genes & Dev. 15 (15): 1971-1984

Copyright © 2001 by Cold Spring Harbor Laboratory Press.

Vol. 15, No. 15, pp. 1971-1984, August 1, 2001

RESEARCH PAPER
FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis

Liming Xiong, Byeong-ha Lee, Manabu Ishitani, Hojoung Lee, Changqing Zhang, and Jian-Kang Zhu1

Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA

The plant hormone abscisic acid (ABA) plays a wide range of important roles in plant growth and development, including embryogenesis, seed dormancy, root and shoot growth, transpiration, and stress tolerance. ABA and various abiotic stresses also activate the expression of numerous plant genes through undefined signaling pathways. To gain insight into ABA and stress signal transduction, we conducted a genetic screen based on ABA- and stress-inducible gene transcription. Here we report the identification of an Arabidopsis mutation, fiery1 (fry1), which results in super-induction of ABA- and stress-responsive genes. Seed germination and postembryonic development of fry1 are more sensitive to ABA or stress inhibition. The mutant plants are also compromised in tolerance to freezing, drought, and salt stresses. Map-based cloning revealed that FRY1 encodes an inositol polyphosphate 1-phosphatase, which functions in the catabolism of inositol 1, 4, 5-trisphosphate (IP3). Upon ABA treatment, fry1 mutant plants accumulated more IP3 than did the wild-type plants. These results provide the first genetic evidence indicating that phosphoinositols mediate ABA and stress signal transduction in plants and their turnover is critical for attenuating ABA and stress signaling.

[Key Words: Abscisic acid; cold stress; salt stress; inositol polyphosphate 1-phosphatase; IP3; gene regulation]


1 Corresponding author.


GENES & DEVELOPMENT 15:1971-1984 © 2001 by Cold Spring Harbor Laboratory Press  ISSN 0890-9369/01 $5.00

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The Arabidopsis thaliana RNA Editing Factor SLO2, which Affects the Mitochondrial Electron Transport Chain, Participates in Multiple Stress and Hormone Responses.
Q. Zhu, J. Dugardeyn, C. Zhang, P. Muhlenbock, P. J. Eastmond, R. Valcke, B. De Coninck, S. Oden, M. Karampelias, B. P. A. Cammue, et al. (2014)
Mol Plant 7, 290-310
   Abstract »    Full Text »    PDF »
Role of chromatin in water stress responses in plants.
S.-K. Han and D. Wagner (2013)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Role for cytoplasmic nucleotide hydrolysis in hepatic function and protein synthesis.
B. H. Hudson, J. P. Frederick, L. Y. Drake, L. C. Megosh, R. P. Irving, and J. D. York (2013)
PNAS 110, 5040-5045
   Abstract »    Full Text »    PDF »
OsTZF1, a CCCH-Tandem Zinc Finger Protein, Confers Delayed Senescence and Stress Tolerance in Rice by Regulating Stress-Related Genes.
A. Jan, K. Maruyama, D. Todaka, S. Kidokoro, M. Abo, E. Yoshimura, K. Shinozaki, K. Nakashima, and K. Yamaguchi-Shinozaki (2013)
Plant Physiology 161, 1202-1216
   Abstract »    Full Text »    PDF »
A role for lipid-mediated signaling in plant gravitropism.
C. M. Smith, M. Desai, E. S. Land, and I. Y. Perera (2013)
Am. J. Botany 100, 153-160
   Abstract »    Full Text »    PDF »
Overexpression of the wheat salt tolerance-related gene TaSC enhances salt tolerance in Arabidopsis.
X. Huang, Y. Zhang, B. Jiao, G. Chen, S. Huang, F. Guo, Y. Shen, Zhanjing Huang, and B. Zhao (2012)
J. Exp. Bot. 63, 5463-5473
   Abstract »    Full Text »    PDF »
Surveillance of 3' Noncoding Transcripts Requires FIERY1 and XRN3 in Arabidopsis.
Y. Kurihara, R. J. Schmitz, J. R. Nery, M. D. Schultz, E. Okubo-Kurihara, T. Morosawa, M. Tanaka, T. Toyoda, M. Seki, and J. R. Ecker (2012)
g3 2, 487-498
   Abstract »    Full Text »    PDF »
Ethylene's Role in Phosphate Starvation Signaling: More than Just a Root Growth Regulator.
V. K. Nagarajan and A. P. Smith (2012)
Plant Cell Physiol. 53, 277-286
   Abstract »    Full Text »    PDF »
Evidence for a SAL1-PAP Chloroplast Retrograde Pathway That Functions in Drought and High Light Signaling in Arabidopsis.
G. M. Estavillo, P. A. Crisp, W. Pornsiriwong, M. Wirtz, D. Collinge, C. Carrie, E. Giraud, J. Whelan, P. David, H. Javot, et al. (2011)
PLANT CELL 23, 3992-4012
   Abstract »    Full Text »    PDF »
A Multiple Stress-Responsive Gene ERD15 from Solanum pennellii Confers Stress Tolerance in Tobacco.
K. Ziaf, R. Loukehaich, P. Gong, H. Liu, Q. Han, T. Wang, H. Li, and Z. Ye (2011)
Plant Cell Physiol. 52, 1055-1067
   Abstract »    Full Text »    PDF »
myo-Inositol-1-phosphate Synthase Is Required for Polar Auxin Transport and Organ Development.
H. Chen and L. Xiong (2010)
J. Biol. Chem. 285, 24238-24247
   Abstract »    Full Text »    PDF »
Overexpressing a Putative Aquaporin Gene from Wheat, TaNIP, Enhances Salt Tolerance in Transgenic Arabidopsis.
Z. Gao, X. He, B. Zhao, C. Zhou, Y. Liang, R. Ge, Y. Shen, and Z. Huang (2010)
Plant Cell Physiol. 51, 767-775
   Abstract »    Full Text »    PDF »
The Arabidopsis thaliana Myo-Inositol 1-Phosphate Synthase1 Gene Is Required for Myo-inositol Synthesis and Suppression of Cell Death.
J. L. Donahue, S. R. Alford, J. Torabinejad, R. E. Kerwin, A. Nourbakhsh, W. K. Ray, M. Hernick, X. Huang, B. M. Lyons, P. P. Hein, et al. (2010)
PLANT CELL 22, 888-903
   Abstract »    Full Text »    PDF »
The RON1/FRY1/SAL1 Gene Is Required for Leaf Morphogenesis and Venation Patterning in Arabidopsis.
P. Robles, D. Fleury, H. Candela, G. Cnops, M. M. Alonso-Peral, S. Anami, A. Falcone, C. Caldana, L. Willmitzer, M. R. Ponce, et al. (2010)
Plant Physiology 152, 1357-1372
   Abstract »    Full Text »    PDF »
Chloroplastic Phosphoadenosine Phosphosulfate Metabolism Regulates Basal Levels of the Prohormone Jasmonic Acid in Arabidopsis Leaves.
V. M. Rodriguez, A. Chetelat, P. Majcherczyk, and E. E. Farmer (2010)
Plant Physiology 152, 1335-1345
   Abstract »    Full Text »    PDF »
VTC4 Is a Bifunctional Enzyme That Affects Myoinositol and Ascorbate Biosynthesis in Plants.
J. Torabinejad, J. L. Donahue, B. N. Gunesekera, M. J. Allen-Daniels, and G. E. Gillaspy (2009)
Plant Physiology 150, 951-961
   Abstract »    Full Text »    PDF »
Karrikins Discovered in Smoke Trigger Arabidopsis Seed Germination by a Mechanism Requiring Gibberellic Acid Synthesis and Light.
D. C. Nelson, J.-A. Riseborough, G. R. Flematti, J. Stevens, E. L. Ghisalberti, K. W. Dixon, and S. M. Smith (2009)
Plant Physiology 149, 863-873
   Abstract »    Full Text »    PDF »
Arabidopsis Synaptotagmin 1 Is Required for the Maintenance of Plasma Membrane Integrity and Cell Viability.
A. L. Schapire, B. Voigt, J. Jasik, A. Rosado, R. Lopez-Cobollo, D. Menzel, J. Salinas, S. Mancuso, V. Valpuesta, F. Baluska, et al. (2008)
PLANT CELL 20, 3374-3388
   Abstract »    Full Text »    PDF »
Interaction of the WD40 Domain of a Myoinositol Polyphosphate 5-Phosphatase with SnRK1 Links Inositol, Sugar, and Stress Signaling.
E. A. Ananieva, G. E. Gillaspy, A. Ely, R. N. Burnette, and F. L. Erickson (2008)
Plant Physiology 148, 1868-1882
   Abstract »    Full Text »    PDF »
Functional Identification of Arabidopsis Stress Regulatory Genes Using the Controlled cDNA Overexpression System.
C. Papdi, E. Abraham, M. P. Joseph, C. Popescu, C. Koncz, and L. Szabados (2008)
Plant Physiology 147, 528-542
   Abstract »    Full Text »    PDF »
Elucidating the Germination Transcriptional Program Using Small Molecules.
G. W. Bassel, P. Fung, T.-f. F. Chow, J. A. Foong, N. J. Provart, and S. R. Cutler (2008)
Plant Physiology 147, 143-155
   Abstract »    Full Text »    PDF »
Activated Expression of an Arabidopsis HD-START Protein Confers Drought Tolerance with Improved Root System and Reduced Stomatal Density.
H. Yu, X. Chen, Y.-Y. Hong, Y. Wang, P. Xu, S.-D. Ke, H.-Y. Liu, J.-K. Zhu, D. J. Oliver, and C.-B. Xiang (2008)
PLANT CELL 20, 1134-1151
   Abstract »    Full Text »    PDF »
An Update on Abscisic Acid Signaling in Plants and More ....
A. Wasilewska, F. Vlad, C. Sirichandra, Y. Redko, F. Jammes, C. Valon, N. F. d. Frey, and J. Leung (2008)
Mol Plant 1, 198-217
   Abstract »    Full Text »    PDF »
Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba.
Z. An, W. Jing, Y. Liu, and W. Zhang (2008)
J. Exp. Bot. 59, 815-825
   Abstract »    Full Text »    PDF »
Arabidopsis FIERY1, XRN2, and XRN3 Are Endogenous RNA Silencing Suppressors.
I. Gy, V. Gasciolli, D. Lauressergues, J.-B. Morel, J. Gombert, F. Proux, C. Proux, H. Vaucheret, and A. C. Mallory (2007)
PLANT CELL 19, 3451-3461
   Abstract »    Full Text »    PDF »
STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, Two DEAD-Box RNA Helicases That Attenuate Arabidopsis Responses to Multiple Abiotic Stresses.
P. Kant, S. Kant, M. Gordon, R. Shaked, and S. Barak (2007)
Plant Physiology 145, 814-830
   Abstract »    Full Text »    PDF »
The CCCH-Type Zinc Finger Proteins AtSZF1 and AtSZF2 Regulate Salt Stress Responses in Arabidopsis.
J. Sun, H. Jiang, Y. Xu, H. Li, X. Wu, Q. Xie, and C. Li (2007)
Plant Cell Physiol. 48, 1148-1158
   Abstract »    Full Text »    PDF »
Overexpression of an R1R2R3 MYB Gene, OsMYB3R-2, Increases Tolerance to Freezing, Drought, and Salt Stress in Transgenic Arabidopsis.
X. Dai, Y. Xu, Q. Ma, W. Xu, T. Wang, Y. Xue, and K. Chong (2007)
Plant Physiology 143, 1739-1751
   Abstract »    Full Text »    PDF »
Inositol Polyphosphate 5-Phosphatases 1 and 2 Are Required for Regulating Seedling Growth.
B. Gunesekera, J. Torabinejad, J. Robinson, and G. E. Gillaspy (2007)
Plant Physiology 143, 1408-1417
   Abstract »    Full Text »    PDF »
Inositol trisphosphate receptor in higher plants: is it real?.
O. Krinke, Z. Novotna, O. Valentova, and J. Martinec (2007)
J. Exp. Bot. 58, 361-376
   Abstract »    Full Text »    PDF »
EARLY RESPONSIVE TO DEHYDRATION 15, a Negative Regulator of Abscisic Acid Responses in Arabidopsis.
T. Kariola, G. Brader, E. Helenius, J. Li, P. Heino, and E. T. Palva (2006)
Plant Physiology 142, 1559-1573
   Abstract »    Full Text »    PDF »
The Arabidopsis Tetratricopeptide Repeat-Containing Protein TTL1 Is Required for Osmotic Stress Responses and Abscisic Acid Sensitivity.
A. Rosado, A. L. Schapire, R. A. Bressan, A. L. Harfouche, P. M. Hasegawa, V. Valpuesta, and M. A. Botella (2006)
Plant Physiology 142, 1113-1126
   Abstract »    Full Text »    PDF »
Enhancement of Abscisic Acid Sensitivity and Reduction of Water Consumption in Arabidopsis by Combined Inactivation of the Protein Phosphatases Type 2C ABI1 and HAB1.
A. Saez, N. Robert, M. H. Maktabi, J. I. Schroeder, R. Serrano, and P. L. Rodriguez (2006)
Plant Physiology 141, 1389-1399
   Abstract »    Full Text »    PDF »
STABILIZED1, a Stress-Upregulated Nuclear Protein, Is Required for Pre-mRNA Splicing, mRNA Turnover, and Stress Tolerance in Arabidopsis.
B.-h. Lee, A. Kapoor, J. Zhu, and J.-K. Zhu (2006)
PLANT CELL 18, 1736-1749
   Abstract »    Full Text »    PDF »
Identification of plant stress-responsive determinants in arabidopsis by large-scale forward genetic screens.
H. Koiwa, R. A. Bressan, and P. M. Hasegawa (2006)
J. Exp. Bot. 57, 1119-1128
   Abstract »    Full Text »    PDF »
Role of N-Terminal Hydrophobic Region in Modulating the Subcellular Localization and Enzyme Activity of the Bisphosphate Nucleotidase from Debaryomyces hansenii.
M. Aggarwal and A. K. Mondal (2006)
Eukaryot. Cell 5, 262-271
   Abstract »    Full Text »    PDF »
The Protein Phosphatase AtPP2CA Negatively Regulates Abscisic Acid Signal Transduction in Arabidopsis, and Effects of abh1 on AtPP2CA mRNA.
J. M. Kuhn, A. Boisson-Dernier, M. B. Dizon, M. H. Maktabi, and J. I. Schroeder (2006)
Plant Physiology 140, 127-139
   Abstract »    Full Text »    PDF »
At5PTase13 Modulates Cotyledon Vein Development through Regulating Auxin Homeostasis.
W.-H. Lin, Y. Wang, B. Mueller-Roeber, C. A. Brearley, Z.-H. Xu, and H.-W. Xue (2005)
Plant Physiology 139, 1677-1691
   Abstract »    Full Text »    PDF »
The Arabidopsis Cold-Responsive Transcriptome and Its Regulation by ICE1.
B.-h. Lee, D. A. Henderson, and J.-K. Zhu (2005)
PLANT CELL 17, 3155-3175
   Abstract »    Full Text »    PDF »
Role of an Arabidopsis AP2/EREBP-Type Transcriptional Repressor in Abscisic Acid and Drought Stress Responses.
C.-P. Song, M. Agarwal, M. Ohta, Y. Guo, U. Halfter, P. Wang, and J.-K. Zhu (2005)
PLANT CELL 17, 2384-2396
   Abstract »    Full Text »    PDF »
The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation.
X. Zhang, V. Garreton, and N.-H. Chua (2005)
Genes & Dev. 19, 1532-1543
   Abstract »    Full Text »    PDF »
Mutations in the Arabidopsis Phosphoinositide Phosphatase Gene SAC9 Lead to Overaccumulation of PtdIns(4,5)P2 and Constitutive Expression of the Stress-Response Pathway.
M. E. Williams, J. Torabinejad, E. Cohick, K. Parker, E. J. Drake, J. E. Thompson, M. Hortter, and D. B. DeWald (2005)
Plant Physiology 138, 686-700
   Abstract »    Full Text »    PDF »
A WRKY Gene from Creosote Bush Encodes an Activator of the Abscisic Acid Signaling Pathway.
X. Zou, J. R. Seemann, D. Neuman, and Q. J. Shen (2004)
J. Biol. Chem. 279, 55770-55779
   Abstract »    Full Text »    PDF »
FRAGILE FIBER3, an Arabidopsis Gene Encoding a Type II Inositol Polyphosphate 5-Phosphatase, Is Required for Secondary Wall Synthesis and Actin Organization in Fiber Cells.
R. Zhong, D. H. Burk, W. H. Morrison III, and Z.-H. Ye (2004)
PLANT CELL 16, 3242-3259
   Abstract »    Full Text »    PDF »
Isolation and Characterization of Novel Mutants Affecting the Abscisic Acid Sensitivity of Arabidopsis Germination and Seedling Growth.
N. Nishimura, T. Yoshida, M. Murayama, T. Asami, K. Shinozaki, and T. Hirayama (2004)
Plant Cell Physiol. 45, 1485-1499
   Abstract »    Full Text »    PDF »
Molecular Characterization of an Arabidopsis Gene Encoding a Phospholipid-Specific Inositol Polyphosphate 5-Phosphatase.
M. E. Ercetin and G. E. Gillaspy (2004)
Plant Physiology 135, 938-946
   Abstract »    Full Text »    PDF »
COTYLEDON VASCULAR PATTERN2-Mediated Inositol (1,4,5) Triphosphate Signal Transduction Is Essential for Closed Venation Patterns of Arabidopsis Foliar Organs.
F. M. Carland and T. Nelson (2004)
PLANT CELL 16, 1263-1275
   Abstract »    Full Text »    PDF »
Microarray Expression Analyses of Arabidopsis Guard Cells and Isolation of a Recessive Abscisic Acid Hypersensitive Protein Phosphatase 2C Mutant.
N. Leonhardt, J. M. Kwak, N. Robert, D. Waner, G. Leonhardt, and J. I. Schroeder (2004)
PLANT CELL 16, 596-615
   Abstract »    Full Text »    PDF »
Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants.
V. Chinnusamy, K. Schumaker, and J.-K. Zhu (2004)
J. Exp. Bot. 55, 225-236
   Abstract »    Full Text »    PDF »
The Arabidopsis Cupin Domain Protein AtPirin1 Interacts with the G Protein {alpha}-Subunit GPA1 and Regulates Seed Germination and Early Seedling Development.
Y. R. Lapik and L. S. Kaufman (2003)
PLANT CELL 15, 1578-1590
   Abstract »    Full Text »    PDF »
Gibberellin Biosynthesis and Response during Arabidopsis Seed Germination.
M. Ogawa, A. Hanada, Y. Yamauchi, A. Kuwahara, Y. Kamiya, and S. Yamaguchi (2003)
PLANT CELL 15, 1591-1604
   Abstract »    Full Text »    PDF »
Viviparous1 Alters Global Gene Expression Patterns through Regulation of Abscisic Acid Signaling.
M. Suzuki, M. G. Ketterling, Q.-B. Li, and D. R. McCarty (2003)
Plant Physiology 132, 1664-1677
   Abstract »    Full Text »    PDF »
NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis.
J. M. Kwak, I. C. Mori, Z.-M. Pei, N. Leonhardt, M. A. Torres, J. L. Dangl, R. E. Bloom, S. Bodde, J. D. G. Jones, and J. I. Schroeder (2003)
EMBO J. 22, 2623-2633
   Abstract »    Full Text »    PDF »
The SAC Domain-Containing Protein Gene Family in Arabidopsis.
R. Zhong and Z.-H. Ye (2003)
Plant Physiology 132, 544-555
   Abstract »    Full Text »    PDF »
Small Ubiquitin-Like Modifier Modulates Abscisic Acid Signaling in Arabidopsis.
L. M. Lois, C. D. Lima, and N.-H. Chua (2003)
PLANT CELL 15, 1347-1359
   Abstract »    Full Text »    PDF »
An Arabidopsis Inositol 5-Phosphatase Gain-of-Function Alters Abscisic Acid Signaling.
R. N. Burnette, B. M. Gunesekera, and G. E. Gillaspy (2003)
Plant Physiology 132, 1011-1019
   Abstract »    Full Text »    PDF »
Cross-talk in Plant Hormone Signalling: What Arabidopsis Mutants Are Telling Us.
S. GAZZARRINI and P. MCCOURT (2003)
Ann. Bot. 91, 605-612
   Abstract »    Full Text »    PDF »
A network of rice genes associated with stress response and seed development.
B. Cooper, J. D. Clarke, P. Budworth, J. Kreps, D. Hutchison, S. Park, S. Guimil, M. Dunn, P. Luginbuhl, C. Ellero, et al. (2003)
PNAS 100, 4945-4950
   Abstract »    Full Text »    PDF »
ABA-Activated SnRK2 Protein Kinase is Required for Dehydration Stress Signaling in Arabidopsis.
R. Yoshida, T. Hobo, K. Ichimura, T. Mizoguchi, F. Takahashi, J. Aronso, J. R. Ecker, and K. Shinozaki (2002)
Plant Cell Physiol. 43, 1473-1483
   Abstract »    Full Text »    PDF »
Plasma Membrane-Associated ROP10 Small GTPase Is a Specific Negative Regulator of Abscisic Acid Responses in Arabidopsis.
Z.-L. Zheng, M. Nafisi, A. Tam, H. Li, D. N. Crowell, S. N. Chary, J. I. Schroeder, J. Shen, and Z. Yang (2002)
PLANT CELL 14, 2787-2797
   Abstract »    Full Text »    PDF »
Disruption of a Guard Cell-Expressed Protein Phosphatase 2A Regulatory Subunit, RCN1, Confers Abscisic Acid Insensitivity in Arabidopsis.
J. M. Kwak, J.-H. Moon, Y. Murata, K. Kuchitsu, N. Leonhardt, A. DeLong, and J. I. Schroeder (2002)
PLANT CELL 14, 2849-2861
   Abstract »    Full Text »    PDF »
Localization, Ion Channel Regulation, and Genetic Interactions during Abscisic Acid Signaling of the Nuclear mRNA Cap-Binding Protein, ABH1.
V. Hugouvieux, Y. Murata, J. J. Young, J. M. Kwak, D. Z. Mackesy, and J. I. Schroeder (2002)
Plant Physiology 130, 1276-1287
   Abstract »    Full Text »    PDF »
Inositol Phospholipid Metabolism in Arabidopsis. Characterized and Putative Isoforms of Inositol Phospholipid Kinase and Phosphoinositide-Specific Phospholipase C.
B. Mueller-Roeber and C. Pical (2002)
Plant Physiology 130, 22-46
   Abstract »    Full Text »    PDF »
C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development.
H. Koiwa, A. W. Barb, L. Xiong, F. Li, M. G. McCully, B.-h. Lee, I. Sokolchik, J. Zhu, Z. Gong, M. Reddy, et al. (2002)
PNAS 99, 10893-10898
   Abstract »    Full Text »    PDF »
Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis.
L. Xiong, H. Lee, M. Ishitani, Y. Tanaka, B. Stevenson, H. Koiwa, R. A. Bressan, P. M. Hasegawa, and J.-K. Zhu (2002)
PNAS 99, 10899-10904
   Abstract »    Full Text »    PDF »
Screening for Gene Regulation Mutants by Bioluminescence Imaging.
V. Chinnusamy, B. Stevenson, B.-h. Lee, and J.-K. Zhu (2002)
Sci. STKE 2002, pl10
   Abstract »    Full Text »    PDF »
A Screen for Genes That Function in Abscisic Acid Signaling in Arabidopsis thaliana.
E. Nambara, M. Suzuki, S. Abrams, D. R. McCarty, Y. Kamiya, and P. McCourt (2002)
Genetics 161, 1247-1255
   Abstract »    Full Text »    PDF »
Hypersensitivity of Abscisic Acid-Induced Cytosolic Calcium Increases in the Arabidopsis Farnesyltransferase Mutant era1-2.
G. J. Allen, Y. Murata, S. P. Chu, M. Nafisi, and J. I. Schroeder (2002)
PLANT CELL 14, 1649-1662
   Abstract »    Full Text »    PDF »
Abscisic Acid Signaling in Seeds and Seedlings.
R. R. Finkelstein, S. S. L. Gampala, and C. D. Rock (2002)
PLANT CELL 14, S15-S45
   Full Text »    PDF »
Cell Signaling during Cold, Drought, and Salt Stress.
L. Xiong, K. S. Schumaker, and J.-K. Zhu (2002)
PLANT CELL 14, S165-S183
   Full Text »    PDF »
Calcium at the Crossroads of Signaling.
D. Sanders, J. Pelloux, C. Brownlee, and J. F. Harper (2002)
PLANT CELL 14, S401-S417
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882