Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Genes & Dev. 15 (23): 3088-3103

Copyright © 2001 by Cold Spring Harbor Laboratory Press.

Vol. 15, No. 23, pp. 3088-3103, December 1, 2001

PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies

Shrikesh Sachdev,1 Laurakay Bruhn,1 Heidemarie Sieber,1 Andrea Pichler,2 Frauke Melchior,2 and Rudolf Grosschedl1,3

1 Gene Center and Institute of Biochemistry, University of Munich, 81377 Munich, Germany; and 2 Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany

The Wnt-responsive transcription factor LEF1 can activate transcription in association with beta -catenin and repress transcription in association with Groucho. In search of additional regulatory mechanisms of LEF1 function, we identified the protein inhibitor of activated STAT, PIASy, as a novel interaction partner of LEF1. Coexpression of PIASy with LEF1 results in potent repression of LEF1 activity and in covalent modification of LEF1 with SUMO. PIASy markedly stimulates the sumoylation of LEF1 and multiple other proteins in vivo and functions as a SUMO E3 ligase for LEF1 in a reconstituted system in vitro. Moreover, PIASy binds to nuclear matrix-associated DNA sequences and targets LEF1 to nuclear bodies, suggesting that PIASy-mediated subnuclear sequestration accounts for the repression of LEF1 activity.

[Key Words: PIAS; SUMO; LEF1/TCF; nuclear matrix; PML bodies]

3 Corresponding author.

GENES & DEVELOPMENT 15:3088-3103 © 2001 by Cold Spring Harbor Laboratory Press  ISSN 0890-9369/01 $5.00

Bortezomib inhibits STAT5-dependent degradation of LEF-1, inducing granulocytic differentiation in congenital neutropenia CD34+ cells.
K. Gupta, I. Kuznetsova, O. Klimenkova, M. Klimiankou, J. Meyer, M. A. S. Moore, C. Zeidler, K. Welte, and J. Skokowa (2014)
Blood 123, 2550-2561
   Abstract »    Full Text »    PDF »
PIAS{gamma} expression in relation to clinicopathological, tumour factors and survival in indigenous black breast cancer women.
A. Agboola, A. Musa, A. Banjo, B. Ayoade, M. Deji-Agboola, C. Nolan, E. Rakha, I. Ellis, and A. Green (2014)
J. Clin. Pathol. 67, 301-306
   Abstract »    Full Text »    PDF »
Identification of a Non-covalent Ternary Complex Formed by PIAS1, SUMO1, and UBC9 Proteins Involved in Transcriptional Regulation.
X. H. Mascle, M. Lussier-Price, L. Cappadocia, P. Estephan, L. Raiola, J. G. Omichinski, and M. Aubry (2013)
J. Biol. Chem. 288, 36312-36327
   Abstract »    Full Text »    PDF »
Protein Inhibitors of Activated STAT (Pias1 and Piasy) Differentially Regulate Pituitary Homeobox 2 (PITX2) Transcriptional Activity.
J. Wang, Z. Sun, Z. Zhang, I. Saadi, J. Wang, X. Li, S. Gao, J. J. Engle, A. Kuburas, X. Fu, et al. (2013)
J. Biol. Chem. 288, 12580-12595
   Abstract »    Full Text »    PDF »
UHRF2, a Ubiquitin E3 Ligase, Acts as a Small Ubiquitin-like Modifier E3 Ligase for Zinc Finger Protein 131.
Y. Oh and K. C. Chung (2013)
J. Biol. Chem. 288, 9102-9111
   Abstract »    Full Text »    PDF »
The in Vivo Role of Androgen Receptor SUMOylation as Revealed by Androgen Insensitivity Syndrome and Prostate Cancer Mutations Targeting the Proline/Glycine Residues of Synergy Control Motifs.
S. Mukherjee, O. Cruz-Rodriguez, E. Bolton, and J. A. Iniguez-Lluhi (2012)
J. Biol. Chem. 287, 31195-31206
   Abstract »    Full Text »    PDF »
CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage.
I. H. Ismail, J.-P. Gagne, M.-C. Caron, D. McDonald, Z. Xu, J.-Y. Masson, G. G. Poirier, and M. J. Hendzel (2012)
Nucleic Acids Res. 40, 5497-5510
   Abstract »    Full Text »    PDF »
The many faces and functions of {beta}-catenin.
T. Valenta, G. Hausmann, and K. Basler (2012)
EMBO J. 31, 2714-2736
   Abstract »    Full Text »    PDF »
Characterization of a PIAS4 Homologue from Zebrafish: Insights into Its Conserved Negative Regulatory Mechanism in the TRIF, MAVS, and IFN Signaling Pathways during Vertebrate Evolution.
R. Xiong, L. Nie, L.-x. Xiang, and J.-z. Shao (2012)
J. Immunol. 188, 2653-2668
   Abstract »    Full Text »    PDF »
UBC9 Autosumoylation Negatively Regulates Sumoylation of Septins in Saccharomyces cerevisiae.
C.-W. Ho, H.-T. Chen, and J. Hwang (2011)
J. Biol. Chem. 286, 21826-21834
   Abstract »    Full Text »    PDF »
PKC{zeta} mediates disturbed flow-induced endothelial apoptosis via p53 SUMOylation.
K.-S. Heo, H. Lee, P. Nigro, T. Thomas, N.-T. Le, E. Chang, C. McClain, C. A. Reinhart-King, M. R. King, B. C. Berk, et al. (2011)
J. Cell Biol. 193, 867-884
   Abstract »    Full Text »    PDF »
PIASy Inhibits Virus-induced and Interferon-stimulated Transcription through Distinct Mechanisms.
T. Kubota, M. Matsuoka, S. Xu, N. Otsuki, M. Takeda, A. Kato, and K. Ozato (2011)
J. Biol. Chem. 286, 8165-8175
   Abstract »    Full Text »    PDF »
Molecular Determinants for Small Maf Protein Control of Platelet Production.
H. Motohashi, R. Fujita, M. Takayama, A. Inoue, F. Katsuoka, E. H. Bresnick, and M. Yamamoto (2011)
Mol. Cell. Biol. 31, 151-162
   Abstract »    Full Text »    PDF »
PIAS1 regulates CP2c localization and active promoter complex formation in erythroid cell-specific {alpha}-globin expression.
H. Chul Kang, J. Hyung Chae, J. Jeon, W. Kim, D. Hyun Ha, J. Ho Shin, C. Gil Kim, and C. Geun Kim (2010)
Nucleic Acids Res. 38, 5456-5471
   Abstract »    Full Text »    PDF »
Phosphorylation-Dependent Interaction of SATB1 and PIAS1 Directs SUMO-Regulated Caspase Cleavage of SATB1.
J. A. T. Tan, J. Song, Y. Chen, and L. K. Durrin (2010)
Mol. Cell. Biol. 30, 2823-2836
   Abstract »    Full Text »    PDF »
The SUMO E3 Ligase Activity of Pc2 Is Coordinated through a SUMO Interaction Motif.
S. h. Yang and A. D. Sharrocks (2010)
Mol. Cell. Biol. 30, 2193-2205
   Abstract »    Full Text »    PDF »
A Novel Role for Protein Inhibitor of Activated STAT (PIAS) Proteins in Modulating the Activity of Zimp7, a Novel PIAS-like Protein, in Androgen Receptor-mediated Transcription.
Y. Peng, J. Lee, C. Zhu, and Z. Sun (2010)
J. Biol. Chem. 285, 11465-11475
   Abstract »    Full Text »    PDF »
Specific Domain Structures Control Abscisic Acid-, Salicylic Acid-, and Stress-Mediated SIZ1 Phenotypes.
M. S. Cheong, H. C. Park, M. J. Hong, J. Lee, W. Choi, J. B. Jin, H. J. Bohnert, S. Y. Lee, R. A. Bressan, and D.-J. Yun (2009)
Plant Physiology 151, 1930-1942
   Abstract »    Full Text »    PDF »
PARP-1 transcriptional activity is regulated by sumoylation upon heat shock.
N. Martin, K. Schwamborn, V. Schreiber, A. Werner, C. Guillier, X.-D. Zhang, O. Bischof, J.-S. Seeler, and A. Dejean (2009)
EMBO J. 28, 3534-3548
   Abstract »    Full Text »    PDF »
SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle.
C. Figueroa-Romero, J. A. Iniguez-Lluhi, J. Stadler, C.-R. Chang, D. Arnoult, P. J. Keller, Y. Hong, C. Blackstone, and E. L. Feldman (2009)
FASEB J 23, 3917-3927
   Abstract »    Full Text »    PDF »
Small Ubiquitin-like Modifier (SUMO) Modification of the Androgen Receptor Attenuates Polyglutamine-mediated Aggregation.
S. Mukherjee, M. Thomas, N. Dadgar, A. P. Lieberman, and J. A. Iniguez-Lluhi (2009)
J. Biol. Chem. 284, 21296-21306
   Abstract »    Full Text »    PDF »
Dazap2 modulates transcription driven by the Wnt effector TCF-4.
J. Lukas, P. Mazna, T. Valenta, L. Doubravska, V. Pospichalova, M. Vojtechova, B. Fafilek, R. Ivanek, J. Plachy, J. Novak, et al. (2009)
Nucleic Acids Res. 37, 3007-3020
   Abstract »    Full Text »    PDF »
Sumoylation of the Transcription Factor NFATc1 Leads to Its Subnuclear Relocalization and Interleukin-2 Repression by Histone Deacetylase.
A. Nayak, J. Glockner-Pagel, M. Vaeth, J. E. Schumann, M. Buttmann, T. Bopp, E. Schmitt, E. Serfling, and F. Berberich-Siebelt (2009)
J. Biol. Chem. 284, 10935-10946
   Abstract »    Full Text »    PDF »
PIAS3 negatively regulates RANKL-mediated osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblasts.
T. Hikata, H. Takaishi, J. Takito, A. Hakozaki, M. Furukawa, S. Uchikawa, T. Kimura, Y. Okada, M. Matsumoto, A. Yoshimura, et al. (2009)
Blood 113, 2202-2212
   Abstract »    Full Text »    PDF »
SUMOylation Inhibits SF-1 Activity by Reducing CDK7-Mediated Serine 203 Phosphorylation.
W.-H. Yang, J. H. Heaton, H. Brevig, S. Mukherjee, J. A. Iniguez-Lluhi, and G. D. Hammer (2009)
Mol. Cell. Biol. 29, 613-625
   Abstract »    Full Text »    PDF »
Molecular Basis for SUMOylation-dependent Regulation of DNA Binding Activity of Heat Shock Factor 2.
Y. Tateishi, M. Ariyoshi, R. Igarashi, H. Hara, K. Mizuguchi, A. Seto, A. Nakai, T. Kokubo, H. Tochio, and M. Shirakawa (2009)
J. Biol. Chem. 284, 2435-2447
   Abstract »    Full Text »    PDF »
The PHD Domain of Plant PIAS Proteins Mediates Sumoylation of Bromodomain GTE Proteins.
M. Garcia-Dominguez, R. March-Diaz, and J. C. Reyes (2008)
J. Biol. Chem. 283, 21469-21477
   Abstract »    Full Text »    PDF »
PIASy Represses CCAAT/Enhancer-binding Protein {delta} (C/EBP{delta}) Transcriptional Activity by Sequestering C/EBP{delta} to the Nuclear Periphery.
S. Zhou, J. Si, T. Liu, and J. W. DeWille (2008)
J. Biol. Chem. 283, 20137-20148
   Abstract »    Full Text »    PDF »
SUMO Assay with Peptide Arrays on Solid Support: Insights into SUMO Target Sites.
K. Schwamborn, P. Knipscheer, E. van Dijk, W. J. van Dijk, T. K. Sixma, R. H. Meloen, and J. P.M. Langedijk (2008)
J. Biochem. 144, 39-49
   Abstract »    Full Text »    PDF »
Signal transducer and activator of transcription 5A/B in prostate and breast cancers.
S.-H. Tan and M. T Nevalainen (2008)
Endocr. Relat. Cancer 15, 367-390
   Abstract »    Full Text »    PDF »
Spatial Interplay between PIASy and FIP200 in the Regulation of Signal Transduction and Transcriptional Activity.
N. Martin, K. Schwamborn, H. Urlaub, B. Gan, J.-L. Guan, and A. Dejean (2008)
Mol. Cell. Biol. 28, 2771-2781
   Abstract »    Full Text »    PDF »
SUMOylation of HMGA2: selective destabilization of promyelocytic leukemia protein via proteasome.
X. Cao, C. Clavijo, X. Li, H. H. Lin, Y. Chen, H.-M. Shih, and D. K. Ann (2008)
Mol. Cancer Ther. 7, 923-934
   Abstract »    Full Text »    PDF »
In Vivo Identification of Human Small Ubiquitin-like Modifier Polymerization Sites by High Accuracy Mass Spectrometry and an in Vitro to in Vivo Strategy.
I. Matic, M. van Hagen, J. Schimmel, B. Macek, S. C. Ogg, M. H. Tatham, R. T. Hay, A. I. Lamond, M. Mann, and A. C. O. Vertegaal (2008)
Mol. Cell. Proteomics 7, 132-144
   Abstract »    Full Text »    PDF »
Sumoylation-dependent Control of Homotypic and Heterotypic Synergy by the Kruppel-type Zinc Finger Protein ZBP-89.
S. Chupreta, H. Brevig, L. Bai, J. L. Merchant, and J. A. Iniguez-Lluhi (2007)
J. Biol. Chem. 282, 36155-36166
   Abstract »    Full Text »    PDF »
Topoisomerase I-Dependent Viability Loss in Saccharomyces cerevisiae Mutants Defective in Both SUMO Conjugation and DNA Repair.
X. L. Chen, H. R. Silver, L. Xiong, I. Belichenko, C. Adegite, and E. S. Johnson (2007)
Genetics 177, 17-30
   Abstract »    Full Text »    PDF »
The Arabidopsis E3 SUMO Ligase SIZ1 Regulates Plant Growth and Drought Responses.
R. Catala, J. Ouyang, I. A. Abreu, Y. Hu, H. Seo, X. Zhang, and N.-H. Chua (2007)
PLANT CELL 19, 2952-2966
   Abstract »    Full Text »    PDF »
PIASxbeta is a key regulator of osterix transcriptional activity and matrix mineralization in osteoblasts.
Md. M. Ali, T. Yoshizawa, O. Ishibashi, A. Matsuda, M. Ikegame, J. Shimomura, H. Mera, K. Nakashima, and H. Kawashima (2007)
J. Cell Sci. 120, 2565-2573
   Abstract »    Full Text »    PDF »
Control of specificity and magnitude of NF-{kappa}B and STAT1-mediated gene activation through PIASy and PIAS1 cooperation.
S. Tahk, B. Liu, V. Chernishof, K. A. Wong, H. Wu, and K. Shuai (2007)
PNAS 104, 11643-11648
   Abstract »    Full Text »    PDF »
PIASy-Mediated Sumoylation of Yin Yang 1 Depends on Their Interaction but Not the RING Finger.
Z. Deng, M. Wan, and G. Sui (2007)
Mol. Cell. Biol. 27, 3780-3792
   Abstract »    Full Text »    PDF »
Sumoylation of the Transcriptional Intermediary Factor 1beta (TIF1beta), the Co-repressor of the KRAB Multifinger Proteins, Is Required for Its Transcriptional Activity and Is Modulated by the KRAB Domain.
X. H. Mascle, D. Germain-Desprez, P. Huynh, P. Estephan, and M. Aubry (2007)
J. Biol. Chem. 282, 10190-10202
   Abstract »    Full Text »    PDF »
SIZ1-Mediated Sumoylation of ICE1 Controls CBF3/DREB1A Expression and Freezing Tolerance in Arabidopsis.
K. Miura, J. B. Jin, J. Lee, C. Y. Yoo, V. Stirm, T. Miura, E. N. Ashworth, R. A. Bressan, D.-J. Yun, and P. M. Hasegawa (2007)
PLANT CELL 19, 1403-1414
   Abstract »    Full Text »    PDF »
Wnt signalling: variety at the core.
S. Hoppler and C. L. Kavanagh (2007)
J. Cell Sci. 120, 385-393
   Abstract »    Full Text »    PDF »
Stress-induced Inactivation of the c-Myb Transcription Factor through Conjugation of SUMO-2/3 Proteins.
M. Sramko, J. Markus, J. Kabat, L. Wolff, and J. Bies (2006)
J. Biol. Chem. 281, 40065-40075
   Abstract »    Full Text »    PDF »
Distinct and Overlapping Sets of SUMO-1 and SUMO-2 Target Proteins Revealed by Quantitative Proteomics.
A. C. O. Vertegaal, J. S. Andersen, S. C. Ogg, R. T. Hay, M. Mann, and A. I. Lamond (2006)
Mol. Cell. Proteomics 5, 2298-2310
   Abstract »    Full Text »    PDF »
Ubc9 Regulates Mitosis and Cell Survival during Zebrafish Development.
M. Nowak and M. Hammerschmidt (2006)
Mol. Biol. Cell 17, 5324-5336
   Abstract »    Full Text »    PDF »
Regulation of MBD1-mediated transcriptional repression by SUMO and PIAS proteins.
M. J. Lyst, X. Nan, and I. Stancheva (2006)
EMBO J. 25, 5317-5328
   Abstract »    Full Text »    PDF »
Multiple domains in Siz SUMO ligases contribute to substrate selectivity.
A. Reindle, I. Belichenko, G. R. Bylebyl, X. L. Chen, N. Gandhi, and E. S. Johnson (2006)
J. Cell Sci. 119, 4749-4757
   Abstract »    Full Text »    PDF »
Stat1 and SUMO modification.
L. Song, S. Bhattacharya, A. A. Yunus, C. D. Lima, and C. Schindler (2006)
Blood 108, 3237-3244
   Abstract »    Full Text »    PDF »
PIAS3 induction of PRB sumoylation represses PRB transactivation by destabilizing its retention in the nucleus.
J.-H. Man, H.-Y. Li, P.-J. Zhang, T. Zhou, K. He, X. Pan, B. Liang, A.-L. Li, J. Zhao, W.-L. Gong, et al. (2006)
Nucleic Acids Res. 34, 5552-5566
   Abstract »    Full Text »    PDF »
Functional Interaction between Human Herpesvirus 6 Immediate-Early 2 Protein and Ubiquitin-Conjugating Enzyme 9 in the Absence of Sumoylation.
A. Tomoiu, A. Gravel, R. M. Tanguay, and L. Flamand (2006)
J. Virol. 80, 10218-10228
   Abstract »    Full Text »    PDF »
Negative Modulation of RXR{alpha} Transcriptional Activity by Small Ubiquitin-related Modifier (SUMO) Modification and Its Reversal by SUMO-specific Protease SUSP1.
S. J. Choi, S. S. Chung, E. J. Rho, H. W. Lee, M. H. Lee, H.-S. Choi, J. H. Seol, S. H. Baek, O. S. Bang, and C. H. Chung (2006)
J. Biol. Chem. 281, 30669-30677
   Abstract »    Full Text »    PDF »
Sumoylation of CCAAT/Enhancer-binding Protein {alpha} and Its Functional Roles in Hepatocyte Differentiation.
Y. Sato, K. Miyake, H. Kaneoka, and S. Iijima (2006)
J. Biol. Chem. 281, 21629-21639
   Abstract »    Full Text »    PDF »
NARF, an Nemo-like Kinase (NLK)-associated Ring Finger Protein Regulates the Ubiquitylation and Degradation of T Cell Factor/Lymphoid Enhancer Factor (TCF/LEF).
M. Yamada, J. Ohnishi, B. Ohkawara, S. Iemura, K. Satoh, J. Hyodo-Miura, K. Kawachi, T. Natsume, and H. Shibuya (2006)
J. Biol. Chem. 281, 20749-20760
   Abstract »    Full Text »    PDF »
MafG Sumoylation Is Required for Active Transcriptional Repression.
H. Motohashi, F. Katsuoka, C. Miyoshi, Y. Uchimura, H. Saitoh, C. Francastel, J. D. Engel, and M. Yamamoto (2006)
Mol. Cell. Biol. 26, 4652-4663
   Abstract »    Full Text »    PDF »
The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis..
G.C. T. Pipes, E. E. Creemers, and E. N. Olson (2006)
Genes & Dev. 20, 1545-1556
   Abstract »    Full Text »    PDF »
Characterization of a Family of Nucleolar SUMO-specific Proteases with Preference for SUMO-2 or SUMO-3.
L. Gong and E. T. H. Yeh (2006)
J. Biol. Chem. 281, 15869-15877
   Abstract »    Full Text »    PDF »
PIASx{beta} acts as an activator of Hoxb1 and is antagonized by Krox20 during hindbrain segmentation.
M. Garcia-Dominguez, P. Gilardi-Hebenstreit, and P. Charnay (2006)
EMBO J. 25, 2432-2442
   Abstract »    Full Text »    PDF »
Interaction of Protein Inhibitor of Activated STAT (PIAS) Proteins with the TATA-binding Protein, TBP.
J. R. Prigge and E. E. Schmidt (2006)
J. Biol. Chem. 281, 12260-12269
   Abstract »    Full Text »    PDF »
CA150 expression delays striatal cell death in overexpression and knock-in conditions for mutant huntingtin neurotoxicity..
M. Arango, S. Holbert, D. Zala, E. Brouillet, J. Pearson, E. Regulier, A. K. Thakur, P. Aebischer, R. Wetzel, N. Deglon, et al. (2006)
J. Neurosci. 26, 4649-4659
   Abstract »    Full Text »    PDF »
SUMOylation Interferes with CCAAT/Enhancer-Binding Protein beta-Mediated c-myc Repression, but Not IL-4 Activation in T Cells..
F. Berberich-Siebelt, I. Berberich, M. Andrulis, B. Santner-Nanan, M. K. Jha, S. Klein-Hessling, A. Schimpl, and E. Serfling (2006)
J. Immunol. 176, 4843-4851
   Abstract »    Full Text »    PDF »
PIAS proteins and transcriptional regulation--more than just SUMO E3 ligases?.
A. D. Sharrocks (2006)
Genes & Dev. 20, 754-758
   Full Text »    PDF »
PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein..
H. Lee, J. C. Quinn, K. V. Prasanth, V. A. Swiss, K. D. Economides, M. M. Camacho, D. L. Spector, and C. Abate-Shen (2006)
Genes & Dev. 20, 784-794
   Abstract »    Full Text »    PDF »
SUMO-1 Controls the Protein Stability and the Biological Function of Phosducin.
C. Klenk, J. Humrich, U. Quitterer, and M. J. Lohse (2006)
J. Biol. Chem. 281, 8357-8364
   Abstract »    Full Text »    PDF »
SUMO-3 Enhances Androgen Receptor Transcriptional Activity through a Sumoylation-independent Mechanism in Prostate Cancer Cells.
Z. Zheng, C. Cai, J. Omwancha, S.-Y. Chen, T. Baslan, and L. Shemshedini (2006)
J. Biol. Chem. 281, 4002-4012
   Abstract »    Full Text »    PDF »
Control of MEF2 Transcriptional Activity by Coordinated Phosphorylation and Sumoylation.
S. Gregoire, A. M. Tremblay, L. Xiao, Q. Yang, K. Ma, J. Nie, Z. Mao, Z. Wu, V. Giguere, and X.-J. Yang (2006)
J. Biol. Chem. 281, 4423-4433
   Abstract »    Full Text »    PDF »
HIC-5 Is a Novel Repressor of Lymphoid Enhancer Factor/T-cell Factor-driven Transcription.
S. M. Ghogomu, S. van Venrooy, M. Ritthaler, D. Wedlich, and D. Gradl (2006)
J. Biol. Chem. 281, 1755-1764
   Abstract »    Full Text »    PDF »
Functional role of NF-IL6{beta} and its sumoylation and acetylation modifications in promoter activation of cyclooxygenase 2 gene.
J.-M. Wang, C.-Y. Ko, L.-C. Chen, W.-L. Wang, and W.-C. Chang (2006)
Nucleic Acids Res. 34, 217-231
   Abstract »    Full Text »    PDF »
Interaction of Moloney Murine Leukemia Virus Capsid with Ubc9 and PIASy Mediates SUMO-1 Addition Required Early in Infection.
A. Yueh, J. Leung, S. Bhattacharyya, L. A. Perrone, K. de los Santos, S.-y. Pu, and S. P. Goff (2006)
J. Virol. 80, 342-352
   Abstract »    Full Text »    PDF »
FLI-1 Functionally Interacts with PIASx{alpha}, a Member of the PIAS E3 SUMO Ligase Family.
E. van den Akker, S. Ano, H.-M. Shih, L.-C. Wang, M. Pironin, J. J. Palvimo, N. Kotaja, O. Kirsh, A. Dejean, and J. Ghysdael (2005)
J. Biol. Chem. 280, 38035-38046
   Abstract »    Full Text »    PDF »
Interactions between Coilin and PIASy partially link Cajal bodies to PML bodies.
J. Sun, H. Xu, S. H. Subramony, and M. D. Hebert (2005)
J. Cell Sci. 118, 4995-5003
   Abstract »    Full Text »    PDF »
SUMO-1 Modification Alters ADAR1 Editing Activity.
J. M.P. Desterro, L. P. Keegan, E. Jaffray, R. T. Hay, M. A. O'Connell, and M. Carmo-Fonseca (2005)
Mol. Biol. Cell 16, 5115-5126
   Abstract »    Full Text »    PDF »
TRAF7 Sequesters c-Myb to the Cytoplasm by Stimulating Its Sumoylation.
Y. Morita, C. Kanei-Ishii, T. Nomura, and S. Ishii (2005)
Mol. Biol. Cell 16, 5433-5444
   Abstract »    Full Text »    PDF »
Pc2-mediated Sumoylation of Smad-interacting Protein 1 Attenuates Transcriptional Repression of E-cadherin.
J. Long, D. Zuo, and M. Park (2005)
J. Biol. Chem. 280, 35477-35489
   Abstract »    Full Text »    PDF »
Regulation of MEF2 by Histone Deacetylase 4- and SIRT1 Deacetylase-Mediated Lysine Modifications.
X. Zhao, T. Sternsdorf, T. A. Bolger, R. M. Evans, and T.-P. Yao (2005)
Mol. Cell. Biol. 25, 8456-8464
   Abstract »    Full Text »    PDF »
An internal ribosome entry site mediates translation of lymphoid enhancer factor-1.
RNA 11, 1385-1399
   Abstract »    Full Text »    PDF »
Down-Regulation of c-Fos/c-Jun AP-1 Dimer Activity by Sumoylation.
G. Bossis, C. E. Malnou, R. Farras, E. Andermarcher, R. Hipskind, M. Rodriguez, D. Schmidt, S. Muller, I. Jariel-Encontre, and M. Piechaczyk (2005)
Mol. Cell. Biol. 25, 6964-6979
   Abstract »    Full Text »    PDF »
SUMO-Dependent Compartmentalization in Promyelocytic Leukemia Protein Nuclear Bodies Prevents the Access of LRH-1 to Chromatin.
A. Chalkiadaki and I. Talianidis (2005)
Mol. Cell. Biol. 25, 5095-5105
   Abstract »    Full Text »    PDF »
PIASx acts as an Elk-1 coactivator by facilitating derepression.
S.-H. Yang and A. D. Sharrocks (2005)
EMBO J. 24, 2161-2171
   Abstract »    Full Text »    PDF »
PIASy mediates SUMO-2 conjugation of Topoisomerase-II on mitotic chromosomes.
Y. Azuma, A. Arnaoutov, T. Anan, and M. Dasso (2005)
EMBO J. 24, 2172-2182
   Abstract »    Full Text »    PDF »
Quantitative SUMO-1 Modification of a Vaccinia Virus Protein Is Required for Its Specific Localization and Prevents Its Self-Association.
S. Palacios, L. H. Perez, S. Welsch, S. Schleich, K. Chmielarska, F. Melchior, and J. K. Locker (2005)
Mol. Biol. Cell 16, 2822-2835
   Abstract »    Full Text »    PDF »
SUMO Represses Transcriptional Activity of the Drosophila SoxNeuro and Human Sox3 Central Nervous System-specific Transcription Factors.
J. Savare, N. Bonneaud, and F. Girard (2005)
Mol. Biol. Cell 16, 2660-2669
   Abstract »    Full Text »    PDF »
Sumoylation induced by the Arf tumor suppressor: A p53-independent function.
K. Tago, S. Chiocca, and C. J. Sherr (2005)
PNAS 102, 7689-7694
   Abstract »    Full Text »    PDF »
SUMO-1 Modification of PIASy, an E3 Ligase, Is Necessary for PIASy-Dependent Activation of Tcf-4.
M. Ihara, H. Yamamoto, and A. Kikuchi (2005)
Mol. Cell. Biol. 25, 3506-3518
   Abstract »    Full Text »    PDF »
Ikaros SUMOylation: Switching Out of Repression.
P. Gomez-del Arco, J. Koipally, and K. Georgopoulos (2005)
Mol. Cell. Biol. 25, 2688-2697
   Abstract »    Full Text »    PDF »
Repression and Coactivation of CCAAT/Enhancer-binding Protein {epsilon} by Sumoylation and Protein Inhibitor of Activated STATx Proteins.
J. Kim, S. Sharma, Y. Li, E. Cobos, J. J. Palvimo, and S. C. Williams (2005)
J. Biol. Chem. 280, 12246-12254
   Abstract »    Full Text »    PDF »
Association with Class IIa Histone Deacetylases Upregulates the Sumoylation of MEF2 Transcription Factors.
S. Gregoire and X.-J. Yang (2005)
Mol. Cell. Biol. 25, 2273-2287
   Abstract »    Full Text »    PDF »
The DEAD-Box Protein DP103 (Ddx20 or Gemin-3) Represses Orphan Nuclear Receptor Activity via SUMO Modification.
M. B. Lee, L. A. Lebedeva, M. Suzawa, S. A. Wadekar, M. Desclozeaux, and H. A. Ingraham (2005)
Mol. Cell. Biol. 25, 1879-1890
   Abstract »    Full Text »    PDF »
Role for SUMO Modification in Facilitating Transcriptional Repression by BKLF.
J. Perdomo, A. Verger, J. Turner, and M. Crossley (2005)
Mol. Cell. Biol. 25, 1549-1559
   Abstract »    Full Text »    PDF »
Negative Regulation of NF-{kappa}B Signaling by PIAS1.
B. Liu, R. Yang, K. A. Wong, C. Getman, N. Stein, M. A. Teitell, G. Cheng, H. Wu, and K. Shuai (2005)
Mol. Cell. Biol. 25, 1113-1123
   Abstract »    Full Text »    PDF »
Multiple activities contribute to Pc2 E3 function.
M. H. Kagey, T. A. Melhuish, S. E. Powers, and D. Wotton (2005)
EMBO J. 24, 108-119
   Abstract »    Full Text »    PDF »
Sumoylation of MITF and Its Related Family Members TFE3 and TFEB.
A. J. Miller, C. Levy, I. J. Davis, E. Razin, and D. E. Fisher (2005)
J. Biol. Chem. 280, 146-155
   Abstract »    Full Text »    PDF »
p53-Dependent and -Independent Functions of the Arf Tumor Suppressor.
Cold Spring Harb Symp Quant Biol 70, 129-137
   Abstract »    PDF »
A Universal Strategy for Proteomic Studies of SUMO and Other Ubiquitin-like Modifiers.
G. Rosas-Acosta, W. K. Russell, A. Deyrieux, D. H. Russell, and V. G. Wilson (2005)
Mol. Cell. Proteomics 4, 56-72
   Abstract »    Full Text »    PDF »
Regulation and Function of SUMO Modification.
R. S. Hilgarth, L. A. Murphy, H. S. Skaggs, D. C. Wilkerson, H. Xing, and K. D. Sarge (2004)
J. Biol. Chem. 279, 53899-53902
   Full Text »    PDF »
Nuclear translocation of an ICA512 cytosolic fragment couples granule exocytosis and insulin expression in {beta}-cells.
M. Trajkovski, H. Mziaut, A. Altkruger, J. Ouwendijk, K.-P. Knoch, S. Muller, and M. Solimena (2004)
J. Cell Biol. 167, 1063-1074
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882