Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Genes & Dev. 15 (9): 1104-1114

Copyright © 2001 by Cold Spring Harbor Laboratory Press.

Vol. 15, No. 9, pp. 1104-1114, May 1, 2001

Subcellular localization of the Snf1 kinase is regulated by specific beta  subunits and a novel glucose signaling mechanism

Olivier Vincent,1 Robert Townley,2 Sergei Kuchin,1 and Marian Carlson1,2,3

1 Departments of Genetics and Development and Microbiology, and 2 Integrated Program in Cellular Biology, Molecular Biology and Biophysical Studies, Columbia University, New York, New York 10032, USA

The Snf1/AMP-activated protein kinase family has broad roles in transcriptional, metabolic, and developmental regulation in response to stress. In Saccharomyces cerevisiae, Snf1 is required for the response to glucose limitation. Snf1 kinase complexes contain the alpha  (catalytic) subunit Snf1, one of the three related beta  subunits Gal83, Sip1, or Sip2, and the gamma  subunit Snf4. We present evidence that the beta  subunits regulate the subcellular localization of the Snf1 kinase. Green fluorescent protein fusions to Gal83, Sip1, and Sip2 show different patterns of localization to the nucleus, vacuole, and/or cytoplasm. We show that Gal83 directs Snf1 to the nucleus in a glucose-regulated manner. We further identify a novel signaling pathway that controls this nuclear localization in response to glucose phosphorylation. This pathway is distinct from the glucose signaling pathway that inhibits Snf1 kinase activity and responds not only to glucose but also to galactose and sucrose. Such independent regulation of the localization and the activity of the Snf1 kinase, combined with the distinct localization of kinases containing different beta  subunits, affords versatility in regulating physiological responses.

[Key Words: Snf1/AMPK kinases; yeast; nuclear localization; glucose signaling]

3 Corresponding author.

GENES & DEVELOPMENT 15:1104-1114 © 2001 by Cold Spring Harbor Laboratory Press  ISSN 0890-9369/01 $5.00

Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator.
R. Usaite, M. C. Jewett, A. P. Oliveira, J. R. Yates III, L. Olsson, and J. Nielsen (2014)
Mol Syst Biol 5, 319
   Abstract »    Full Text »    PDF »
Protein Kinase A Is Part of a Mechanism That Regulates Nuclear Reimport of the Nuclear tRNA Export Receptors Los1p and Msn5p.
J. B. Pierce, G. van der Merwe, and D. Mangroo (2014)
Eukaryot. Cell 13, 209-230
   Abstract »    Full Text »    PDF »
SnRK1A-Interacting Negative Regulators Modulate the Nutrient Starvation Signaling Sensor SnRK1 in Source-Sink Communication in Cereal Seedlings under Abiotic Stress.
C.-R. Lin, K.-W. Lee, C.-Y. Chen, Y.-F. Hong, J.-L. Chen, C.-A. Lu, K.-T. Chen, T.-H. D. Ho, and S.-M. Yu (2014)
PLANT CELL 26, 808-827
   Abstract »    Full Text »    PDF »
Alteration of Plasma Membrane Organization by an Anticancer Lysophosphatidylcholine Analogue Induces Intracellular Acidification and Internalization of Plasma Membrane Transporters in Yeast.
O. Czyz, T. Bitew, A. Cuesta-Marban, C. R. McMaster, F. Mollinedo, and V. Zaremberg (2013)
J. Biol. Chem. 288, 8419-8432
   Abstract »    Full Text »    PDF »
Mitochondrial Porin Por1 and Its Homolog Por2 Contribute to the Positive Control of Snf1 Protein Kinase in Saccharomyces cerevisiae.
V. Strogolova, M. Orlova, A. Shevade, and S. Kuchin (2012)
Eukaryot. Cell 11, 1568-1572
   Abstract »    Full Text »    PDF »
Nutritional Control of Growth and Development in Yeast.
J. R. Broach (2012)
Genetics 192, 73-105
   Abstract »    Full Text »    PDF »
The {beta}-Subunit of the SnRK1 Complex Is Phosphorylated by the Plant Cell Death Suppressor Adi3.
J. Avila, O. G. Gregory, D. Su, T. A. Deeter, S. Chen, C. Silva-Sanchez, S. Xu, G. B. Martin, and T. P. Devarenne (2012)
Plant Physiology 159, 1277-1290
   Abstract »    Full Text »    PDF »
AMPK phosphorylation by Ssp1 is required for proper sexual differentiation in fission yeast.
N. Valbuena and S. Moreno (2012)
J. Cell Sci. 125, 2655-2664
   Abstract »    Full Text »    PDF »
Heterotrimer-independent regulation of activation-loop phosphorylation of Snf1 protein kinase involves two protein phosphatases.
A. Ruiz, Y. Liu, X. Xu, and M. Carlson (2012)
PNAS 109, 8652-8657
   Abstract »    Full Text »    PDF »
The Potato Sucrose Transporter StSUT1 Interacts with a DRM-Associated Protein Disulfide Isomerase.
U. Krugel, H.-X. He, K. Gier, J. Reins, I. Chincinska, B. Grimm, W. X. Schulze, and C. Kuhn (2012)
Mol Plant 5, 43-62
   Abstract »    Full Text »    PDF »
Subunit and Domain Requirements for Adenylate-mediated Protection of Snf1 Kinase Activation Loop from Dephosphorylation.
D. G. Chandrashekarappa, R. R. McCartney, and M. C. Schmidt (2011)
J. Biol. Chem. 286, 44532-44541
   Abstract »    Full Text »    PDF »
Reg1 Protein Regulates Phosphorylation of All Three Snf1 Isoforms but Preferentially Associates with the Gal83 Isoform.
Y. Zhang, R. R. McCartney, D. G. Chandrashekarappa, S. Mangat, and M. C. Schmidt (2011)
Eukaryot. Cell 10, 1628-1636
   Abstract »    Full Text »    PDF »
Ubp8 and SAGA Regulate Snf1 AMP Kinase Activity.
M. A. Wilson, E. Koutelou, C. Hirsch, K. Akdemir, A. Schibler, M. C. Barton, and S. Y. R. Dent (2011)
Mol. Cell. Biol. 31, 3126-3135
   Abstract »    Full Text »    PDF »
Alterations at Dispersed Sites Cause Phosphorylation and Activation of SNF1 Protein Kinase during Growth on High Glucose.
M. Momcilovic and M. Carlson (2011)
J. Biol. Chem. 286, 23544-23551
   Abstract »    Full Text »    PDF »
Customizable views on semantically integrated networks for systems biology.
J. Weile, M. Pocock, S. J. Cockell, P. Lord, J. M. Dewar, E.-M. Holstein, D. Wilkinson, D. Lydall, J. Hallinan, and A. Wipat (2011)
Bioinformatics 27, 1299-1306
   Abstract »    Full Text »    PDF »
Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase.
A. Ruiz, X. Xu, and M. Carlson (2011)
PNAS 108, 6349-6354
   Abstract »    Full Text »    PDF »
Interaction of SNF1 Protein Kinase with Its Activating Kinase Sak1.
Y. Liu, X. Xu, and M. Carlson (2011)
Eukaryot. Cell 10, 313-319
   Abstract »    Full Text »    PDF »
Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses.
H. Zhang, X. Mao, R. Jing, X. Chang, and H. Xie (2011)
J. Exp. Bot. 62, 975-988
   Abstract »    Full Text »    PDF »
The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield.
P. Coello, S. J. Hey, and N. G. Halford (2011)
J. Exp. Bot. 62, 883-893
   Abstract »    Full Text »    PDF »
Identification of a Nuclear Export Signal in the Catalytic Subunit of AMP-activated Protein Kinase.
N. Kazgan, T. Williams, L. J. Forsberg, and J. E. Brenman (2010)
Mol. Biol. Cell 21, 3433-3442
   Abstract »    Full Text »    PDF »
Differential Roles of the Glycogen-Binding Domains of {beta} Subunits in Regulation of the Snf1 Kinase Complex.
S. Mangat, D. Chandrashekarappa, R. R. McCartney, K. Elbing, and M. C. Schmidt (2010)
Eukaryot. Cell 9, 173-183
   Abstract »    Full Text »    PDF »
Mitochondrial Function Is an Inducible Determinant of Osmotic Stress Adaptation in Yeast.
M. M. Pastor, M. Proft, and A. Pascual-Ahuir (2009)
J. Biol. Chem. 284, 30307-30317
   Abstract »    Full Text »    PDF »
SnRK1 Isoforms AKIN10 and AKIN11 Are Differentially Regulated in Arabidopsis Plants under Phosphate Starvation.
S. Fragoso, L. Espindola, J. Paez-Valencia, A. Gamboa, Y. Camacho, E. Martinez-Barajas, and P. Coello (2009)
Plant Physiology 149, 1906-1916
   Abstract »    Full Text »    PDF »
The 2009 Genetics Society of America Medal.
F. Winston (2009)
Genetics 181, 827-829
   Full Text »    PDF »
GzSNF1 Is Required for Normal Sexual and Asexual Development in the Ascomycete Gibberella zeae.
S.-H. Lee, J. Lee, S. Lee, E.-H. Park, K.-W. Kim, M.-D. Kim, S.-H. Yun, and Y.-W. Lee (2009)
Eukaryot. Cell 8, 116-127
   Abstract »    Full Text »    PDF »
A Chemical Genomics Study Identifies Snf1 as a Repressor of GCN4 Translation.
M. K. Shirra, R. R. McCartney, C. Zhang, K. M. Shokat, M. C. Schmidt, and K. M. Arndt (2008)
J. Biol. Chem. 283, 35889-35898
   Abstract »    Full Text »    PDF »
{beta}-Subunits of the SnRK1 Complexes Share a Common Ancestral Function Together with Expression and Function Specificities; Physical Interaction with Nitrate Reductase Specifically Occurs via AKIN{beta}1-Subunit.
C. Polge, M. Jossier, P. Crozet, L. Gissot, and M. Thomas (2008)
Plant Physiology 148, 1570-1582
   Abstract »    Full Text »    PDF »
The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation.
T. Ye, K. Elbing, and S. Hohmann (2008)
Microbiology 154, 2814-2826
   Abstract »    Full Text »    PDF »
Roles of cis- and trans-Changes in the Regulatory Evolution of Genes in the Gluconeogenic Pathway in Yeast.
Y.-W. Chang, F.-G. Robert Liu, N. Yu, H.-M. Sung, P. Yang, D. Wang, C.-J. Huang, M.-C. Shih, and W.-H. Li (2008)
Mol. Biol. Evol. 25, 1863-1875
   Abstract »    Full Text »    PDF »
Roles of the Glycogen-binding Domain and Snf4 in Glucose Inhibition of SNF1 Protein Kinase.
M. Momcilovic, S. H. Iram, Y. Liu, and M. Carlson (2008)
J. Biol. Chem. 283, 19521-19529
   Abstract »    Full Text »    PDF »
Access Denied: Snf1 Activation Loop Phosphorylation Is Controlled by Availability of the Phosphorylated Threonine 210 to the PP1 Phosphatase.
E. M. Rubenstein, R. R. McCartney, C. Zhang, K. M. Shokat, M. K. Shirra, K. M. Arndt, and M. C. Schmidt (2008)
J. Biol. Chem. 283, 222-230
   Abstract »    Full Text »    PDF »
N-Myristoylation Regulates the SnRK1 Pathway in Arabidopsis.
M. Pierre, J. A. Traverso, B. Boisson, S. Domenichini, D. Bouchez, C. Giglione, and T. Meinnel (2007)
PLANT CELL 19, 2804-2821
   Abstract »    Full Text »    PDF »
Leptin Stimulates Fatty Acid Oxidation and Peroxisome Proliferator-Activated Receptor {alpha} Gene Expression in Mouse C2C12 Myoblasts by Changing the Subcellular Localization of the {alpha}2 Form of AMP-Activated Protein Kinase.
A. Suzuki, S. Okamoto, S. Lee, K. Saito, T. Shiuchi, and Y. Minokoshi (2007)
Mol. Cell. Biol. 27, 4317-4327
   Abstract »    Full Text »    PDF »
Regulation of Snf1 Protein Kinase in Response to Environmental Stress.
S.-P. Hong and M. Carlson (2007)
J. Biol. Chem. 282, 16838-16845
   Abstract »    Full Text »    PDF »
Mechanisms Regulating the Protein Kinases of Saccharomyces cerevisiae.
E. M. Rubenstein and M. C. Schmidt (2007)
Eukaryot. Cell 6, 571-583
   Full Text »    PDF »
Crystal Structures of the Adenylate Sensor from Fission Yeast AMP-Activated Protein Kinase.
R. Townley and L. Shapiro (2007)
Science 315, 1726-1729
   Abstract »    Full Text »    PDF »
Glucose-Responsive Regulators of Gene Expression in Saccharomyces cerevisiae Function at the Nuclear Periphery via a Reverse Recruitment Mechanism.
N. J. Sarma, T. M. Haley, K. E. Barbara, T. D. Buford, K. A. Willis, and G. M. Santangelo (2007)
Genetics 175, 1127-1135
   Abstract »    Full Text »    PDF »
Hxk2 Regulates the Phosphorylation State of Mig1 and Therefore Its Nucleocytoplasmic Distribution.
D. Ahuatzi, A. Riera, R. Pelaez, P. Herrero, and F. Moreno (2007)
J. Biol. Chem. 282, 4485-4493
   Abstract »    Full Text »    PDF »
Regulation of the Nucleocytoplasmic Distribution of Snf1-Gal83 Protein Kinase.
K. Hedbacker and M. Carlson (2006)
Eukaryot. Cell 5, 1950-1956
   Abstract »    Full Text »    PDF »
Nitrogen Availability and TOR Regulate the Snf1 Protein Kinase in Saccharomyces cerevisiae.
M. Orlova, E. Kanter, D. Krakovich, and S. Kuchin (2006)
Eukaryot. Cell 5, 1831-1837
   Abstract »    Full Text »    PDF »
AKINbeta{gamma} Contributes to SnRK1 Heterotrimeric Complexes and Interacts with Two Proteins Implicated in Plant Pathogen Resistance through Its KIS/GBD Sequence.
L. Gissot, C. Polge, M. Jossier, T. Girin, J.-P. Bouly, M. Kreis, and M. Thomas (2006)
Plant Physiology 142, 931-944
   Abstract »    Full Text »    PDF »
SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots.
J. Schwachtje, P. E. H. Minchin, S. Jahnke, J. T. van Dongen, U. Schittko, and I. T. Baldwin (2006)
PNAS 103, 12935-12940
   Abstract »    Full Text »    PDF »
Tpk3 and Snf1 protein kinases regulate Rgt1 association with Saccharomyces cerevisiae HXK2 promoter.
A. Palomino, P. Herrero, and F. Moreno (2006)
Nucleic Acids Res. 34, 1427-1438
   Abstract »    Full Text »    PDF »
Glucose Signaling in Saccharomyces cerevisiae.
G. M. Santangelo (2006)
Microbiol. Mol. Biol. Rev. 70, 253-282
   Abstract »    Full Text »    PDF »
Carbon Source-dependent Assembly of the Snf1p Kinase Complex in Candida albicans.
C. Corvey, P. Koetter, T. Beckhaus, J. Hack, S. Hofmann, M. Hampel, T. Stein, M. Karas, and K.-D. Entian (2005)
J. Biol. Chem. 280, 25323-25330
   Abstract »    Full Text »    PDF »
Function of Mammalian LKB1 and Ca2+/Calmodulin-dependent Protein Kinase Kinase {alpha} as Snf1-activating Kinases in Yeast.
S.-P. Hong, M. Momcilovic, and M. Carlson (2005)
J. Biol. Chem. 280, 21804-21809
   Abstract »    Full Text »    PDF »
Role of Tos3, a Snf1 Protein Kinase Kinase, during Growth of Saccharomyces cerevisiae on Nonfermentable Carbon Sources.
M.-D. Kim, S.-P. Hong, and M. Carlson (2005)
Eukaryot. Cell 4, 861-866
   Abstract »    Full Text »    PDF »
Role of Snf1p in Regulation of Intracellular Sorting of the Lactose and Galactose Transporter Lac12p in Kluyveromyces lactis.
C. Wiedemuth and K. D. Breunig (2005)
Eukaryot. Cell 4, 716-721
   Abstract »    Full Text »    PDF »
The Snf1 Protein Kinase and Sit4 Protein Phosphatase Have Opposing Functions in Regulating TATA-Binding Protein Association With the Saccharomyces cerevisiae INO1 Promoter.
M. K. Shirra, S. E. Rogers, D. E. Alexander, and K. M. Arndt (2005)
Genetics 169, 1957-1972
   Abstract »    Full Text »    PDF »
Histone H3 phosphorylation can promote TBP recruitment through distinct promoter-specific mechanisms.
W.-S. Lo, E. R. Gamache, K. W. Henry, D. Yang, L. Pillus, and S. L. Berger (2005)
EMBO J. 24, 997-1008
   Abstract »    Full Text »    PDF »
A Functional Analysis Reveals Dependence on the Anaphase-Promoting Complex for Prolonged Life Span in Yeast.
T. A. A. Harkness, K. A. Shea, C. Legrand, M. Brahmania, and G. F. Davies (2004)
Genetics 168, 759-774
   Abstract »    Full Text »    PDF »
Pak1 Protein Kinase Regulates Activation and Nuclear Localization of Snf1-Gal83 Protein Kinase.
K. Hedbacker, S.-P. Hong, and M. Carlson (2004)
Mol. Cell. Biol. 24, 8255-8263
   Abstract »    Full Text »    PDF »
Key Role of Ser562/661 in Snf1-Dependent Regulation of Cat8p in Saccharomyces cerevisiae and Kluyveromyces lactis.
G. Charbon, K. D. Breunig, R. Wattiez, J. Vandenhaute, and I. Noel-Georis (2004)
Mol. Cell. Biol. 24, 4083-4091
   Abstract »    Full Text »    PDF »
The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor.
M. Papamichos-Chronakis, T. Gligoris, and D. Tzamarias (2004)
EMBO Rep. 5, 368-372
   Abstract »    Full Text »    PDF »
Simultaneous yet Independent Regulation of Actin Cytoskeletal Organization and Translation Initiation by Glucose in Saccharomyces cerevisiae.
Y. Uesono, M. P. Ashe, and A. Toh-e (2004)
Mol. Biol. Cell 15, 1544-1556
   Abstract »    Full Text »    PDF »
The Protein Kinase Snf1 Is Required for Tolerance to the Ribonucleotide Reductase Inhibitor Hydroxyurea.
C. Dubacq, A. Chevalier, and C. Mann (2004)
Mol. Cell. Biol. 24, 2560-2572
   Abstract »    Full Text »    PDF »
Cyclic AMP-Dependent Protein Kinase Regulates the Subcellular Localization of Snf1-Sip1 Protein Kinase.
K. Hedbacker, R. Townley, and M. Carlson (2004)
Mol. Cell. Biol. 24, 1836-1843
   Abstract »    Full Text »    PDF »
Activation of the Saccharomyces cerevisiae Heat Shock Transcription Factor Under Glucose Starvation Conditions by Snf1 Protein Kinase.
J.-S. Hahn and D. J. Thiele (2004)
J. Biol. Chem. 279, 5169-5176
   Abstract »    Full Text »    PDF »
Mutations in the Gal83 Glycogen-Binding Domain Activate the Snf1/Gal83 Kinase Pathway by a Glycogen-Independent Mechanism.
H. A. Wiatrowski, B. J. W. van Denderen, C. D. Berkey, B. E. Kemp, D. Stapleton, and M. Carlson (2004)
Mol. Cell. Biol. 24, 352-361
   Abstract »    Full Text »    PDF »
Gts1p Activates SNF1-dependent Derepression of HSP104 and TPS1 in the Stationary Phase of Yeast Growth.
S.-i. Yaguchi and K. Tsurugi (2003)
J. Biol. Chem. 278, 29760-29768
   Abstract »    Full Text »    PDF »
Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases.
S.-P. Hong, F. C. Leiper, A. Woods, D. Carling, and M. Carlson (2003)
PNAS 100, 8839-8843
   Abstract »    Full Text »    PDF »
Abscisic Acid and Gibberellin Differentially Regulate Expression of Genes of the SNF1-Related Kinase Complex in Tomato Seeds.
K. J. Bradford, A. B. Downie, O. H. Gee, V. Alvarado, H. Yang, and P. Dahal (2003)
Plant Physiology 132, 1560-1576
   Abstract »    Full Text »    PDF »
Sip2, an N-Myristoylated beta Subunit of Snf1 Kinase, Regulates Aging in Saccharomyces cerevisiae by Affecting Cellular Histone Kinase Activity, Recombination at rDNA Loci, and Silencing.
S. S. Lin, J. K. Manchester, and J. I. Gordon (2003)
J. Biol. Chem. 278, 13390-13397
   Abstract »    Full Text »    PDF »
Isolation of Mutations in the Catalytic Domain of the Snf1 Kinase That Render Its Activity Independent of the Snf4 Subunit.
A. Leech, N. Nath, R. R. McCartney, and M. C. Schmidt (2003)
Eukaryot. Cell 2, 265-273
   Abstract »    Full Text »    PDF »
Snf1 Kinases with Different {beta}-Subunit Isoforms Play Distinct Roles in Regulating Haploid Invasive Growth.
V. K. Vyas, S. Kuchin, C. D. Berkey, and M. Carlson (2003)
Mol. Cell. Biol. 23, 1341-1348
   Abstract »    Full Text »    PDF »
Yap1 Accumulates in the Nucleus in Response to Carbon Stress in Saccharomyces cerevisiae.
H. A. Wiatrowski and M. Carlson (2003)
Eukaryot. Cell 2, 19-26
   Abstract »    Full Text »    PDF »
Std1p (Msn3p) Positively Regulates the Snf1 Kinase in Saccharomyces cerevisiae.
S. Kuchin, V. K. Vyas, E. Kanter, S.-P. Hong, and M. Carlson (2003)
Genetics 163, 507-514
   Abstract »    Full Text »    PDF »
Purification and Characterization of Snf1 Kinase Complexes Containing a Defined beta Subunit Composition.
N. Nath, R. R. McCartney, and M. C. Schmidt (2002)
J. Biol. Chem. 277, 50403-50408
   Abstract »    Full Text »    PDF »
Convergence of the Target of Rapamycin and the Snf1 Protein Kinase Pathways in the Regulation of the Subcellular Localization of Msn2, a Transcriptional Activator of STRE (Stress Response Element)-regulated Genes.
I. Mayordomo, F. Estruch, and P. Sanz (2002)
J. Biol. Chem. 277, 35650-35656
   Abstract »    Full Text »    PDF »
Snf1 Protein Kinase and the Repressors Nrg1 and Nrg2 Regulate FLO11, Haploid Invasive Growth, and Diploid Pseudohyphal Differentiation.
S. Kuchin, V. K. Vyas, and M. Carlson (2002)
Mol. Cell. Biol. 22, 3994-4000
   Abstract »    Full Text »    PDF »
Osmotic Stress Signaling and Osmoadaptation in Yeasts.
S. Hohmann (2002)
Microbiol. Mol. Biol. Rev. 66, 300-372
   Abstract »    Full Text »    PDF »
Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor.
W. Gorner, E. Durchschlag, J. Wolf, E. L. Brown, G. Ammerer, H. Ruis, and C. Schuller (2002)
EMBO J. 21, 135-144
   Abstract »    Full Text »    PDF »
Interaction of the Srb10 Kinase with Sip4, a Transcriptional Activator of Gluconeogenic Genes in Saccharomyces cerevisiae.
O. Vincent, S. Kuchin, S.-P. Hong, R. Townley, V. K. Vyas, and M. Carlson (2001)
Mol. Cell. Biol. 21, 5790-5796
   Abstract »    Full Text »    PDF »
R. R. McCartney and M. C. Schmidt (2001)
J. Biol. Chem. 276, 36460-36466
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882