Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Biol. Chem. 275 (20): 15482-15489

© 2000 by The American Society for Biochemistry and Molecular Biology, Inc.

J Biol Chem, Vol. 275, Issue 20, 15482-15489, May 19, 2000

Elevated Cholesterol Metabolism and Bile Acid Synthesis in Mice Lacking Membrane Tyrosine Kinase Receptor FGFR4*

Chundong YuDagger §, Fen WangDagger , Mikio KanDagger , Chengliu JinDagger , Richard B. JonesDagger , Michael Weinstein, Chu-Xia Deng, and Wallace L. McKeehanDagger ||

From the Department of Biochemistry and Biophysics, Texas A&M University and Dagger  Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030-3303, the § Graduate School of Biomedical Sciences, University of Texas-Houston Health Science Center, Houston, Texas 77030, and the  Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892

Heparan sulfate-regulated transmembrane tyrosine kinase receptor FGFR4 is the major FGFR isotype in mature hepatocytes. Fibroblast growth factor has been implicated in the definition of liver from foregut endoderm where FGFR4 is expressed and stimulation of hepatocyte DNA synthesis in vitro. Here we show that livers of mice lacking FGFR4 exhibited normal morphology and regenerated normally in response to partial hepatectomy. However, the FGFR4 (-/-) mice exhibited depleted gallbladders, an elevated bile acid pool and elevated excretion of bile acids. Cholesterol- and bile acid-controlled liver cholesterol 7alpha -hydroxylase, the limiting enzyme for bile acid synthesis, was elevated, unresponsive to dietary cholesterol, but repressed normally by dietary cholate. Expression pattern and cholate-dependent, cholesterol-induced hepatomegaly in the FGFR4 (-/-) mice suggested that activation of receptor interacting protein 140, a co-repressor of feed-forward activator liver X receptor alpha , may mediate the negative regulation of cholesterol- and bile acid-controlled liver cholesterol 7alpha -hydroxylase transcription by FGFR4 and cholate. The results demonstrate that transmembrane sensors interface with metabolite-controlled transcription networks and suggest that pericellular matrix-controlled liver FGFR4 in particular may ensure adequate cholesterol for cell structures and signal transduction.

* This work was supported by Public Health Service Grants DK35310 and DK47039 from the NIDDK, National Institutes of Health and Grant CA59971 from the NCI, National Institutes of Health.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

|| To whom correspondence should be addressed: Inst. of Biosciences and Technology, 2121 W. Holcombe Blvd., Houston, TX 77030-3303. Tel.: 713-677-7522; Fax: 713-677-7512; E-mail:

Copyright © 2000 by The American Society for Biochemistry and Molecular Biology, Inc.

c-Fos mediates repression of the apical sodium-dependent bile acid transporter by fibroblast growth factor-19 in mice.
A. Ghosh, F. Chen, S. Banerjee, M. Xu, and B. L. Shneider (2014)
Am J Physiol Gastrointest Liver Physiol 306, G163-G171
   Abstract »    Full Text »    PDF »
Observations suggesting bioactive Fgf15 is not present in mouse blood.
Gut 63, 205-206
Authors' response: Observations suggesting bioactive Fgf15 is not present in mouse blood.
M. A. Avila (2014)
Gut 63, 206
   Full Text »    PDF »
Observations suggesting bioactive Fgf15 is not present in mouse blood.
M. Rudling (2013)
   Full Text »
Molecular Mechanisms of Fibroblast Growth Factor Signaling in Physiology and Pathology.
A. A. Belov and M. Mohammadi (2013)
Cold Spring Harb Perspect Biol 5, a015958
   Abstract »    Full Text »    PDF »
Differential regulation of bile acid and cholesterol metabolism by the farnesoid X receptor in Ldlr -/- mice versus hamsters.
C. Gardes, E. Chaput, A. Staempfli, D. Blum, H. Richter, and G. M. Benson (2013)
J. Lipid Res. 54, 1283-1299
   Abstract »    Full Text »    PDF »
Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1-/- mice fed low levels of cholic acid.
R. D. Jones, J. J. Repa, D. W. Russell, J. M. Dietschy, and S. D. Turley (2012)
Am J Physiol Gastrointest Liver Physiol 303, G263-G274
   Abstract »    Full Text »    PDF »
Rev-erb{alpha} and Rev-erb{beta} coordinately protect the circadian clock and normal metabolic function.
A. Bugge, D. Feng, L. J. Everett, E. R. Briggs, S. E. Mullican, F. Wang, J. Jager, and M. A. Lazar (2012)
Genes & Dev. 26, 657-667
   Abstract »    Full Text »    PDF »
Antibody-Mediated Inhibition of Fibroblast Growth Factor 19 Results in Increased Bile Acids Synthesis and Ileal Malabsorption of Bile Acids in Cynomolgus Monkeys.
R. Pai, D. French, N. Ma, K. Hotzel, E. Plise, L. Salphati, K. D. R. Setchell, J. Ware, V. Lauriault, L. Schutt, et al. (2012)
Toxicol. Sci. 126, 446-456
   Abstract »    Full Text »    PDF »
Endocrine fibroblast growth factors 15/19 and 21: from feast to famine.
M. J. Potthoff, S. A. Kliewer, and D. J. Mangelsdorf (2012)
Genes & Dev. 26, 312-324
   Abstract »    Full Text »    PDF »
Enteral bile acid treatment improves parenteral nutrition-related liver disease and intestinal mucosal atrophy in neonatal pigs.
A. K. Jain, B. Stoll, D. G. Burrin, J. J. Holst, and D. D. Moore (2012)
Am J Physiol Gastrointest Liver Physiol 302, G218-G224
   Abstract »    Full Text »    PDF »
Roles of FGF19 in Liver Metabolism.
S. Kir, S. A. Kliewer, and D. J. Mangelsdorf (2011)
Cold Spring Harb Symp Quant Biol 76, 139-144
   Abstract »    Full Text »    PDF »
Metabolic Regulator {beta}Klotho Interacts with Fibroblast Growth Factor Receptor 4 (FGFR4) to Induce Apoptosis and Inhibit Tumor Cell Proliferation.
Y. Luo, C. Yang, W. Lu, R. Xie, C. Jin, P. Huang, F. Wang, and W. L. McKeehan (2010)
J. Biol. Chem. 285, 30069-30078
   Abstract »    Full Text »    PDF »
Regulation of liver regeneration by growth factors and cytokines.
F. Bohm, U. A. Kohler, T. Speicher, and S. Werner (2010)
EMBO Mol Med. 2, 294-305
   Abstract »    Full Text »    PDF »
Relevant use of Klotho in FGF19 subfamily signaling system in vivo.
K.-i. Tomiyama, R. Maeda, I. Urakawa, Y. Yamazaki, T. Tanaka, S. Ito, Y. Nabeshima, T. Tomita, S. Odori, K. Hosoda, et al. (2010)
PNAS 107, 1666-1671
   Abstract »    Full Text »    PDF »
LXR ligand lowers LDL cholesterol in primates, is lipid neutral in hamster, and reduces atherosclerosis in mouse.
E. M. Quinet, M. D. Basso, A. R. Halpern, D. W. Yates, R. J. Steffan, V. Clerin, C. Resmini, J. C. Keith, T. J. Berrodin, I. Feingold, et al. (2009)
J. Lipid Res. 50, 2358-2370
   Abstract »    Full Text »    PDF »
Bile acids: regulation of synthesis.
J. Y. L. Chiang (2009)
J. Lipid Res. 50, 1955-1966
   Abstract »    Full Text »    PDF »
Bile acids as regulatory molecules.
P. B. Hylemon, H. Zhou, W. M. Pandak, S. Ren, G. Gil, and P. Dent (2009)
J. Lipid Res. 50, 1509-1520
   Abstract »    Full Text »    PDF »
Hepatic bile acid metabolism in the neonatal hamster: expansion of the bile acid pool parallels increased Cyp7a1 expression levels.
K. T. Burke, P. S. Horn, P. Tso, J. E. Heubi, and L. A. Woollett (2009)
Am J Physiol Gastrointest Liver Physiol 297, G144-G151
   Abstract »    Full Text »    PDF »
FGF15/FGFR4 Integrates Growth Factor Signaling with Hepatic Bile Acid Metabolism and Insulin Action.
D.-J. Shin and T. F. Osborne (2009)
J. Biol. Chem. 284, 11110-11120
   Abstract »    Full Text »    PDF »
Fifty years of advances in bile acid synthesis and metabolism.
D. W. Russell (2009)
J. Lipid Res. 50, S120-S125
   Abstract »    Full Text »    PDF »
Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation.
P. Lefebvre, B. Cariou, F. Lien, F. Kuipers, and B. Staels (2009)
Physiol Rev 89, 147-191
   Abstract »    Full Text »    PDF »
FGF19 Exhibits Neuroprotective Effects on Adult Mammalian Photoreceptors In Vitro.
S. Siffroi-Fernandez, M.-P. Felder-Schmittbuhl, H. Khanna, A. Swaroop, and D. Hicks (2008)
Invest. Ophthalmol. Vis. Sci. 49, 1696-1704
   Abstract »    Full Text »    PDF »
Resolving the mechanism of bile acid negative-feedback regulation, a Journal of Lipid Research tradition.
R. A. Davis (2008)
J. Lipid Res. 49, 2-3
   Full Text »    PDF »
FGFR4 Prevents Hyperlipidemia and Insulin Resistance but Underlies High-Fat Diet Induced Fatty Liver.
X. Huang, C. Yang, Y. Luo, C. Jin, F. Wang, and W. L. McKeehan (2007)
Diabetes 56, 2501-2510
   Abstract »    Full Text »    PDF »
Tissue-specific Expression of betaKlotho and Fibroblast Growth Factor (FGF) Receptor Isoforms Determines Metabolic Activity of FGF19 and FGF21.
H. Kurosu, M. Choi, Y. Ogawa, A. S. Dickson, R. Goetz, A. V. Eliseenkova, M. Mohammadi, K. P. Rosenblatt, S. A. Kliewer, and M. Kuro-o (2007)
J. Biol. Chem. 282, 26687-26695
   Abstract »    Full Text »    PDF »
betaKlotho is required for metabolic activity of fibroblast growth factor 21.
Y. Ogawa, H. Kurosu, M. Yamamoto, A. Nandi, K. P. Rosenblatt, R. Goetz, A. V. Eliseenkova, M. Mohammadi, and M. Kuro-o (2007)
PNAS 104, 7432-7437
   Abstract »    Full Text »    PDF »
Transgenic expression of CYP7A1 in LDL receptor-deficient mice blocks diet-induced hypercholesterolemia.
E. P. Ratliff, A. Gutierrez, and R. A. Davis (2006)
J. Lipid Res. 47, 1513-1520
   Abstract »    Full Text »    PDF »
Regulation of Fibroblast Growth Factor-23 Signaling by Klotho.
H. Kurosu, Y. Ogawa, M. Miyoshi, M. Yamamoto, A. Nandi, K. P. Rosenblatt, M. G. Baum, S. Schiavi, M.-C. Hu, O. W. Moe, et al. (2006)
J. Biol. Chem. 281, 6120-6123
   Abstract »    Full Text »    PDF »
Context-specific requirements for Fgfr1 signaling through Frs2 and Frs3 during mouse development.
R. V. Hoch and P. Soriano (2006)
Development 133, 663-673
   Abstract »    Full Text »    PDF »
Ectopic Activity of Fibroblast Growth Factor Receptor 1 in Hepatocytes Accelerates Hepatocarcinogenesis by Driving Proliferation and Vascular Endothelial Growth Factor-Induced Angiogenesis.
X. Huang, C. Yu, C. Jin, M. Kobayashi, C. A. Bowles, F. Wang, and W. L. McKeehan (2006)
Cancer Res. 66, 1481-1490
   Abstract »    Full Text »    PDF »
A role for FXR and human FGF-19 in the repression of paraoxonase-1 gene expression by bile acids.
D. M. Shih, H. R. Kast-Woelbern, J. Wong, Y.-R. Xia, P. A. Edwards, and A. J. Lusis (2006)
J. Lipid Res. 47, 384-392
   Abstract »    Full Text »    PDF »
Bile Acids Decrease Hepatic Paraoxonase 1 Expression and Plasma High-Density Lipoprotein Levels Via FXR-Mediated Signaling of FGFR4.
A. Gutierrez, E. P. Ratliff, A. M. Andres, X. Huang, W. L. McKeehan, and R. A. Davis (2006)
Arterioscler Thromb Vasc Biol 26, 301-306
   Abstract »    Full Text »    PDF »
Fgfr4 Is Required for Effective Muscle Regeneration in Vivo: DELINEATION OF A MyoD-Tead2-Fgfr4 TRANSCRIPTIONAL PATHWAY.
P. Zhao, G. Caretti, S. Mitchell, W. L. McKeehan, A. L. Boskey, L. M. Pachman, V. Sartorelli, and E. P. Hoffman (2006)
J. Biol. Chem. 281, 429-438
   Abstract »    Full Text »    PDF »
Y2Y4 Receptor Double Knockout Protects Against Obesity Due to a High-Fat Diet or Y1 Receptor Deficiency in Mice.
A. Sainsbury, H. T. Bergen, D. Boey, D. Bamming, G. J. Cooney, S. Lin, M. Couzens, N. Stroth, N. J. Lee, D. Lindner, et al. (2006)
Diabetes 55, 19-26
   Abstract »    Full Text »    PDF »
Regulation of bile acid biosynthesis by hepatocyte nuclear factor 4{alpha}.
Y. Inoue, A.-M. Yu, S. H. Yim, X. Ma, K. W. Krausz, J. Inoue, C. C. Xiang, M. J. Brownstein, G. Eggertsen, I. Bjorkhem, et al. (2006)
J. Lipid Res. 47, 215-227
   Abstract »    Full Text »    PDF »
The Farnesoid X Receptor: A Molecular Link Between Bile Acid and Lipid and Glucose Metabolism.
T. Claudel, B. Staels, and F. Kuipers (2005)
Arterioscler Thromb Vasc Biol 25, 2020-2030
   Abstract »    Full Text »    PDF »
Independent Repression of Bile Acid Synthesis and Activation of c-Jun N-terminal Kinase (JNK) by Activated Hepatocyte Fibroblast Growth Factor Receptor 4 (FGFR4) and Bile Acids.
C. Yu, F. Wang, C. Jin, X. Huang, and W. L. McKeehan (2005)
J. Biol. Chem. 280, 17707-17714
   Abstract »    Full Text »    PDF »
Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung.
A. E. Serls, S. Doherty, P. Parvatiyar, J. M. Wells, and G. H. Deutsch (2005)
Development 132, 35-47
   Abstract »    Full Text »    PDF »
The Fetoprotein Transcription Factor (FTF) Gene Is Essential to Embryogenesis and Cholesterol Homeostasis and Is Regulated by a DR4 Element.
J.-F. Pare, D. Malenfant, C. Courtemanche, M. Jacob-Wagner, S. Roy, D. Allard, and L. Belanger (2004)
J. Biol. Chem. 279, 21206-21216
   Abstract »    Full Text »    PDF »
Resistance of SHP-null Mice to Bile Acid-induced Liver Damage.
L. Wang, Y. Han, C.-S. Kim, Y.-K. Lee, and D. D. Moore (2003)
J. Biol. Chem. 278, 44475-44481
   Abstract »    Full Text »    PDF »
Perlecan and Tumor Angiogenesis.
X. Jiang and J. R. Couchman (2003)
Journal of Histochemistry & Cytochemistry 51, 1393-1410
   Abstract »    Full Text »    PDF »
Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis.
J. A. Holt, G. Luo, A. N. Billin, J. Bisi, Y. Y. McNeill, K. F. Kozarsky, M. Donahee, D. Y. Wang, T. A. Mansfield, S. A. Kliewer, et al. (2003)
Genes & Dev. 17, 1581-1591
   Abstract »    Full Text »    PDF »
Bile Acid Regulation of Hepatic Physiology: III. Regulation of bile acid synthesis: past progress and future challenges.
M. Fuchs (2003)
Am J Physiol Gastrointest Liver Physiol 284, G551-G557
   Abstract »    Full Text »    PDF »
Disruption of the Sterol Carrier Protein 2 Gene in Mice Impairs Biliary Lipid and Hepatic Cholesterol Metabolism.
M. Fuchs, A. Hafer, C. Munch, F. Kannenberg, S. Teichmann, J. Scheibner, E. F. Stange, and U. Seedorf (2001)
J. Biol. Chem. 276, 48058-48065
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882