Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 275 (22): 16795-16801

© 2000 by The American Society for Biochemistry and Molecular Biology, Inc.

WNK1, a Novel Mammalian Serine/Threonine Protein Kinase Lacking the Catalytic Lysine in Subdomain II*

Bing-e Xu, Jessie M. EnglishDagger , Julie L. Wilsbacher§, Steve Stippec, Elizabeth J. Goldsmith, and Melanie H. Cobb||

From the Departments of Pharmacology and  Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041

We have cloned and characterized a novel mammalian serine/threonine protein kinase WNK1 (with no lysine (K)) from a rat brain cDNA library. WNK1 has 2126 amino acids and can be detected as a protein of ~230 kDa in various cell lines and rat tissues. WNK1 contains a small N-terminal domain followed by the kinase domain and a long C-terminal tail. The WNK1 kinase domain has the greatest similarity to the MEKK protein kinase family. However, overexpression of WNK1 in HEK293 cells exerts no detectable effect on the activity of known, co-transfected mitogen-activated protein kinases, suggesting that it belongs to a distinct pathway. WNK1 phosphorylates the exogenous substrate myelin basic protein as well as itself mostly on serine residues, confirming that it is a serine/threonine protein kinase. The demonstration of activity was striking because WNK1, and its homologs in other organisms lack the invariant catalytic lysine in subdomain II of protein kinases that is crucial for binding to ATP. A model of WNK1 using the structure of cAMP-dependent protein kinase suggests that lysine 233 in kinase subdomain I may provide this function. Mutation of this lysine residue to methionine eliminates WNK1 activity, consistent with the conclusion that it is required for catalysis. This distinct organization of catalytic residues indicates that WNK1 belongs to a novel family of serine/threonine protein kinases.


* This work was supported by National Institutes of Health Grants DK34128 and GM53032.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The nucleotide sequence(s) reported in this paper has been submitted to the GenBankTM/EMBL Data Bank with accession number(s) AF227741.

Dagger Present address: Dept. of Biological Research-Oncology, Schering-Plough Research Inst., Kenilworth, NJ 07033.

§ Supported by a predoctoral fellowship from the Howard Hughes Medical Institute. Present address: Dept. of Cell Biology, Harvard Medical School, Boston, MA 02115.

|| To whom correspondence should be addressed: UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9041. Tel.: 214-648-3627; Fax: 214-648-3811; E-mail: melanie.cobb@email. swmed.edu.


Copyright © 2000 by The American Society for Biochemistry and Molecular Biology, Inc.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Kinases and Pseudokinases: Lessons from RAF.
A. S. Shaw, A. P. Kornev, J. Hu, L. G. Ahuja, and S. S. Taylor (2014)
Mol. Cell. Biol. 34, 1538-1546
   Abstract »    Full Text »    PDF »
Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.).
Y. Sun, C. Wang, B. Yang, F. Wu, X. Hao, W. Liang, F. Niu, J. Yan, H. Zhang, B. Wang, et al. (2014)
J. Exp. Bot. 65, 2171-2188
   Abstract »    Full Text »    PDF »
Pseudohypoaldosteronism Type II: History, Arguments, Answers, and Still Some Questions.
J. K. Healy (2014)
Hypertension 63, 648-654
   Full Text »    PDF »
A molecular update on pseudohypoaldosteronism type II.
G. Pathare, J. G. J. Hoenderop, R. J. M. Bindels, and P. San-Cristobal (2013)
Am J Physiol Renal Physiol 305, F1513-F1520
   Abstract »    Full Text »    PDF »
Regulation of OSR1 and the sodium, potassium, two chloride cotransporter by convergent signals.
S. Sengupta, A. Lorente-Rodriguez, S. Earnest, S. Stippec, X. Guo, D. C. Trudgian, H. Mirzaei, and M. H. Cobb (2013)
PNAS 110, 18826-18831
   Abstract »    Full Text »    PDF »
Wnk kinases are positive regulators of canonical Wnt/{beta}-catenin signalling.
E. Serysheva, H. Berhane, L. Grumolato, K. Demir, S. Balmer, M. Bodak, M. Boutros, S. Aaronson, M. Mlodzik, and A. Jenny (2013)
EMBO Rep. 14, 718-725
   Abstract »    Full Text »    PDF »
Loss of WNK3 is compensated for by the WNK1/SPAK axis in the kidney of the mouse.
K. Mederle, K. Mutig, A. Paliege, I. Carota, S. Bachmann, H. Castrop, and M. Oppermann (2013)
Am J Physiol Renal Physiol 304, F1198-F1209
   Abstract »    Full Text »    PDF »
LINGO-1 Receptor Promotes Neuronal Apoptosis by Inhibiting WNK3 Kinase Activity.
Z. Zhang, X. Xu, Z. Xiang, Z. Yu, J. Feng, and C. He (2013)
J. Biol. Chem. 288, 12152-12160
   Abstract »    Full Text »    PDF »
WNK1 Protein Kinase Regulates Embryonic Cardiovascular Development through the OSR1 Signaling Cascade.
J. Xie, J. Yoon, S.-S. Yang, S.-H. Lin, and C.-L. Huang (2013)
J. Biol. Chem. 288, 8566-8574
   Abstract »    Full Text »    PDF »
Interactions with WNK (With No Lysine) Family Members Regulate Oxidative Stress Response 1 and Ion Co-transporter Activity.
S. Sengupta, S.-W. Tu, K. Wedin, S. Earnest, S. Stippec, K. Luby-Phelps, and M. H. Cobb (2012)
J. Biol. Chem. 287, 37868-37879
   Abstract »    Full Text »    PDF »
Protein kinase WNK3 regulates the neuronal splicing factor Fox-1.
A.-Y. Lee, W. Chen, S. Stippec, J. Self, F. Yang, X. Ding, S. Chen, Y.-C. Juang, and M. H. Cobb (2012)
PNAS 109, 16841-16846
   Abstract »    Full Text »    PDF »
The WNK/SPAK and IRBIT/PP1 Pathways in Epithelial Fluid and Electrolyte Transport.
S. Park, J. H. Hong, E. Ohana, and S. Muallem (2012)
Physiology 27, 291-299
   Abstract »    Full Text »    PDF »
Molecular Physiology of SPAK and OSR1: Two Ste20-Related Protein Kinases Regulating Ion Transport.
K. B. Gagnon and E. Delpire (2012)
Physiol Rev 92, 1577-1617
   Abstract »    Full Text »    PDF »
Kidney-specific WNK1 inhibits sodium reabsorption in the cortical thick ascending limb.
C.-J. Cheng, T. Truong, M. Baum, and C.-L. Huang (2012)
Am J Physiol Renal Physiol 303, F667-F673
   Abstract »    Full Text »    PDF »
Taurine Inhibits K+-Cl- Cotransporter KCC2 to Regulate Embryonic Cl- Homeostasis via With-no-lysine (WNK) Protein Kinase Signaling Pathway.
K. Inoue, T. Furukawa, T. Kumada, J. Yamada, T. Wang, R. Inoue, and A. Fukuda (2012)
J. Biol. Chem. 287, 20839-20850
   Abstract »    Full Text »    PDF »
WNK4 inhibits NCC protein expression through MAPK ERK1/2 signaling pathway.
B. Zhou, D. Wang, X. Feng, Y. Zhang, Y. Wang, J. Zhuang, X. Zhang, G. Chen, E. Delpire, D. Gu, et al. (2012)
Am J Physiol Renal Physiol 302, F533-F539
   Abstract »    Full Text »    PDF »
Molecular Mechanism of Pancreatic and Salivary Gland Fluid and HCOFormula Secretion.
M. G. Lee, E. Ohana, H. W. Park, D. Yang, and S. Muallem (2012)
Physiol Rev 92, 39-74
   Abstract »    Full Text »    PDF »
Genomic-Derived Markers for Early Detection of Calcineurin Inhibitor Immunosuppressant-Mediated Nephrotoxicity.
Y. Cui, Q. Huang, J. T. Auman, B. Knight, X. Jin, K. T. Blanchard, J. Chou, S. Jayadev, and R. S. Paules (2011)
Toxicol. Sci. 124, 23-34
   Abstract »    Full Text »    PDF »
Overexpression of the Sodium Chloride Cotransporter Is Not Sufficient to Cause Familial Hyperkalemic Hypertension.
J. A. McCormick, J. H. Nelson, C.-L. Yang, J. N. Curry, and D. H. Ellison (2011)
Hypertension 58, 888-894
   Abstract »    Full Text »    PDF »
WNK2 Kinase Is a Novel Regulator of Essential Neuronal Cation-Chloride Cotransporters.
J. Rinehart, N. Vazquez, K. T. Kahle, C. A. Hodson, A. M. Ring, E. E. Gulcicek, A. Louvi, N. A. Bobadilla, G. Gamba, and R. P. Lifton (2011)
J. Biol. Chem. 286, 30171-30180
   Abstract »    Full Text »    PDF »
WNK4 kinase inhibits Maxi K channel activity by a kinase-dependent mechanism.
J. Zhuang, X. Zhang, D. Wang, J. Li, B. Zhou, Z. Shi, D. Gu, D. D. Denson, D. C. Eaton, and H. Cai (2011)
Am J Physiol Renal Physiol 301, F410-F419
   Abstract »    Full Text »    PDF »
EMF1 Interacts with EIP1, EIP6 or EIP9 Involved in the Regulation of Flowering Time in Arabidopsis.
H.-Y. Park, S.-Y. Lee, H.-Y. Seok, S.-H. Kim, Z. R. Sung, and Y.-H. Moon (2011)
Plant Cell Physiol. 52, 1376-1388
   Abstract »    Full Text »    PDF »
The WNK Kinase Network Regulating Sodium, Potassium, and Blood Pressure.
E. J. Hoorn, J. H. Nelson, J. A. McCormick, and D. H. Ellison (2011)
J. Am. Soc. Nephrol. 22, 605-614
   Abstract »    Full Text »    PDF »
Downregulation of NCC and NKCC2 cotransporters by kidney-specific WNK1 revealed by gene disruption and transgenic mouse models.
Z. Liu, J. Xie, T. Wu, T. Truong, R. J. Auchus, and C.-L. Huang (2011)
Hum. Mol. Genet. 20, 855-866
   Abstract »    Full Text »    PDF »
Activation of PI3-Kinase Stimulates Endocytosis of ROMK via Akt1/SGK1-Dependent Phosphorylation of WNK1.
C.-J. Cheng and C.-L. Huang (2011)
J. Am. Soc. Nephrol. 22, 460-471
   Abstract »    Full Text »    PDF »
C. elegans STK39/SPAK ortholog-mediated inhibition of ClC anion channel activity is regulated by WNK-independent ERK kinase signaling.
R. A. Falin, H. Miyazaki, and K. Strange (2011)
Am J Physiol Cell Physiol 300, C624-C635
   Abstract »    Full Text »    PDF »
WNK1 is required for mitosis and abscission.
S.-w. Tu, A. Bugde, K. Luby-Phelps, and M. H. Cobb (2011)
PNAS 108, 1385-1390
   Abstract »    Full Text »    PDF »
The WNKs: Atypical Protein Kinases With Pleiotropic Actions.
J. A. McCormick and D. H. Ellison (2011)
Physiol Rev 91, 177-219
   Abstract »    Full Text »    PDF »
INTERSECTINg Pathways in Cell Biology.
J. P. O'Bryan (2010)
Science Signaling 3, re10
   Abstract »    Full Text »    PDF »
Protein Kinase WNK1 Promotes Cell Surface Expression of Glucose Transporter GLUT1 by Regulating a Tre-2/USP6-BUB2-Cdc16 Domain Family Member 4 (TBC1D4)-Rab8A Complex.
A. I. Mendes, P. Matos, S. Moniz, and P. Jordan (2010)
J. Biol. Chem. 285, 39117-39126
   Abstract »    Full Text »    PDF »
Glycoprotein Capture and Quantitative Phosphoproteomics Indicate Coordinated Regulation of Cell Migration upon Lysophosphatidic Acid Stimulation.
N. Mausbacher, T. B. Schreiber, and H. Daub (2010)
Mol. Cell. Proteomics 9, 2337-2353
   Abstract »    Full Text »    PDF »
Decreased ENaC expression compensates the increased NCC activity following inactivation of the kidney-specific isoform of WNK1 and prevents hypertension.
J. Hadchouel, C. Soukaseum, C. Busst, X.-o. Zhou, V. Baudrie, T. Zurrer, M. Cambillau, J.-L. Elghozi, R. P. Lifton, J. Loffing, et al. (2010)
PNAS 107, 18109-18114
   Abstract »    Full Text »    PDF »
Serum and Glucocorticoid-induced Kinase (SGK) 1 and the Epithelial Sodium Channel Are Regulated by Multiple with No Lysine (WNK) Family Members.
C. J. Heise, B.-e. Xu, S. L. Deaton, S.-K. Cha, C.-J. Cheng, S. Earnest, S. Sengupta, Y.-C. Juang, S. Stippec, Y. Xu, et al. (2010)
J. Biol. Chem. 285, 25161-25167
   Abstract »    Full Text »    PDF »
Yet another "active" pseudokinase, Erb3.
S. S. Taylor and A. P. Kornev (2010)
PNAS 107, 8047-8048
   Full Text »    PDF »
Exocytosis mechanisms underlying insulin release and glucose uptake: conserved roles for Munc18c and syntaxin 4.
J. L. Jewell, E. Oh, and D. C. Thurmond (2010)
Am J Physiol Regulatory Integrative Comp Physiol 298, R517-R531
   Abstract »    Full Text »    PDF »
WNK4 Kinase Stimulates Caveola-mediated Endocytosis of TRPV5 Amplifying the Dynamic Range of Regulation of the Channel by Protein Kinase C.
S.-K. Cha and C.-L. Huang (2010)
J. Biol. Chem. 285, 6604-6611
   Abstract »    Full Text »    PDF »
WNK4 Enhances the Degradation of NCC through a Sortilin-Mediated Lysosomal Pathway.
B. Zhou, J. Zhuang, D. Gu, H. Wang, L. Cebotaru, W. B. Guggino, and H. Cai (2010)
J. Am. Soc. Nephrol. 21, 82-92
   Abstract »    Full Text »    PDF »
The thiazide-sensitive Na+-Cl- cotransporter: molecular biology, functional properties, and regulation by WNKs.
G. Gamba (2009)
Am J Physiol Renal Physiol 297, F838-F848
   Abstract »    Full Text »    PDF »
Characterization of the kinase activity of a WNK4 protein complex.
R. Ahlstrom and A. S. L. Yu (2009)
Am J Physiol Renal Physiol 297, F685-F692
   Abstract »    Full Text »    PDF »
LINGO-1 Interacts with WNK1 to Regulate Nogo-induced Inhibition of Neurite Extension.
Z. Zhang, X. Xu, Y. Zhang, J. Zhou, Z. Yu, and C. He (2009)
J. Biol. Chem. 284, 15717-15728
   Abstract »    Full Text »    PDF »
Regulation of ROMK Channel and K+ Homeostasis by Kidney-specific WNK1 Kinase.
Z. Liu, H.-R. Wang, and C.-L. Huang (2009)
J. Biol. Chem. 284, 12198-12206
   Abstract »    Full Text »    PDF »
The renal WNK kinase pathway: a new link to hypertension.
E. J. Hoorn, N. van der Lubbe, and R. Zietse (2009)
Nephrol. Dial. Transplant. 24, 1074-1077
   Full Text »    PDF »
Regulation of a Third Conserved Phosphorylation Site in SGK1.
W. Chen, Y. Chen, B.-e Xu, Y.-C. Juang, S. Stippec, Y. Zhao, and M. H. Cobb (2009)
J. Biol. Chem. 284, 3453-3460
   Abstract »    Full Text »    PDF »
WNK3 positively regulates epithelial calcium channels TRPV5 and TRPV6 via a kinase-dependent pathway.
W. Zhang, T. Na, and J.-B. Peng (2008)
Am J Physiol Renal Physiol 295, F1472-F1484
   Abstract »    Full Text »    PDF »
The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway.
C. Richardson and D. R. Alessi (2008)
J. Cell Sci. 121, 3293-3304
   Abstract »    Full Text »    PDF »
WNK3 and WNK4 amino-terminal domain defines their effect on the renal Na+-Cl- cotransporter.
P. San-Cristobal, J. Ponce-Coria, N. Vazquez, N. A. Bobadilla, and G. Gamba (2008)
Am J Physiol Renal Physiol 295, F1199-F1206
   Abstract »    Full Text »    PDF »
Domains of WNK1 kinase in the regulation of ROMK1.
H.-R. Wang, Z. Liu, and C.-L. Huang (2008)
Am J Physiol Renal Physiol 295, F438-F445
   Abstract »    Full Text »    PDF »
Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases.
J. Ponce-Coria, P. San-Cristobal, K. T. Kahle, N. Vazquez, D. Pacheco-Alvarez, P. de los Heros, P. Juarez, E. Munoz, G. Michel, N. A. Bobadilla, et al. (2008)
PNAS 105, 8458-8463
   Abstract »    Full Text »    PDF »
WNK Kinases and Renal Sodium Transport in Health and Disease: An Integrated View.
J. A. McCormick, C.-L. Yang, and D. H. Ellison (2008)
Hypertension 51, 588-596
   Full Text »    PDF »
Caenorhabditis elegans WNK-STE20 pathway regulates tube formation by modulating ClC channel activity.
N. Hisamoto, T. Moriguchi, S. Urushiyama, S. Mitani, H. Shibuya, and K. Matsumoto (2008)
EMBO Rep. 9, 70-75
   Abstract »    Full Text »    PDF »
WNK1 Is a Novel Regulator of Munc18c-Syntaxin 4 Complex Formation in Soluble NSF Attachment Protein Receptor (SNARE)-mediated Vesicle Exocytosis.
E. Oh, C. J. Heise, J. M. English, M. H. Cobb, and D. C. Thurmond (2007)
J. Biol. Chem. 282, 32613-32622
   Abstract »    Full Text »    PDF »
SLC26A9 is a Cl channel regulated by the WNK kinases.
M. R. Dorwart, N. Shcheynikov, Y. Wang, S. Stippec, and S. Muallem (2007)
J. Physiol. 584, 333-345
   Abstract »    Full Text »    PDF »
WNK4-mediated regulation of renal ion transport proteins.
J.-B. Peng and D. G. Warnock (2007)
Am J Physiol Renal Physiol 293, F961-F973
   Abstract »    Full Text »    PDF »
Evolutionarily conserved WNK and Ste20 kinases are essential for acute volume recovery and survival after hypertonic shrinkage in Caenorhabditis elegans.
K. P. Choe and K. Strange (2007)
Am J Physiol Cell Physiol 293, C915-C927
   Abstract »    Full Text »    PDF »
Epigenome scans and cancer genome sequencing converge on WNK2, a kinase-independent suppressor of cell growth.
C. Hong, K. S. Moorefield, P. Jun, K. D. Aldape, S. Kharbanda, H. S. Phillips, and J. F. Costello (2007)
PNAS 104, 10974-10979
   Abstract »    Full Text »    PDF »
Biological Cross-talk between WNK1 and the Transforming Growth Factor beta-Smad Signaling Pathway.
B.-H. Lee, W. Chen, S. Stippec, and M. H. Cobb (2007)
J. Biol. Chem. 282, 17985-17996
   Abstract »    Full Text »    PDF »
Norepinephrine, via {beta}-Adrenoceptors, Regulates Bumetanide-Sensitive Cotransporter Type 1 Expression in Thick Ascending Limb Cells.
P. A. Sonalker and E. K. Jackson (2007)
Hypertension 49, 1351-1357
   Abstract »    Full Text »    PDF »
WNK4 kinase is a negative regulator of K+-Cl- cotransporters.
T. Garzon-Muvdi, D. Pacheco-Alvarez, K. B. E. Gagnon, N. Vazquez, J. Ponce-Coria, E. Moreno, E. Delpire, and G. Gamba (2007)
Am J Physiol Renal Physiol 292, F1197-F1207
   Abstract »    Full Text »    PDF »
A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas.
L.-W. Tam, N. F. Wilson, and P. A. Lefebvre (2007)
J. Cell Biol. 176, 819-829
   Abstract »    Full Text »    PDF »
WNK4 enhances TRPV5-mediated calcium transport: potential role in hypercalciuria of familial hyperkalemic hypertension caused by gene mutation of WNK4.
Y. Jiang, W. B. Ferguson, and J.-B. Peng (2007)
Am J Physiol Renal Physiol 292, F545-F554
   Abstract »    Full Text »    PDF »
Regulation of activity and localization of the WNK1 protein kinase by hyperosmotic stress.
A. Zagorska, E. Pozo-Guisado, J. Boudeau, A. C. Vitari, F. H. Rafiqi, J. Thastrup, M. Deak, D. G. Campbell, N. A. Morrice, A. R. Prescott, et al. (2007)
J. Cell Biol. 176, 89-100
   Abstract »    Full Text »    PDF »
Regulation of the expression of the Na/Cl cotransporter by WNK4 and WNK1: evidence that accelerated dynamin-dependent endocytosis is not involved.
A. P. Golbang, G. Cope, A. Hamad, M. Murthy, C.-H. Liu, A. W. Cuthbert, and K. M. O'Shaughnessy (2006)
Am J Physiol Renal Physiol 291, F1369-F1376
   Abstract »    Full Text »    PDF »
WNK Protein Kinases Modulate Cellular Cl- Flux by Altering the Phosphorylation State of the Na-K-Cl and K-Cl Cotransporters..
K. T. Kahle, J. Rinehart, A. Ring, I. Gimenez, G. Gamba, S. C. Hebert, and R. P. Lifton (2006)
Physiology 21, 326-335
   Abstract »    Full Text »    PDF »
The Na+:Cl- Cotransporter Is Activated and Phosphorylated at the Amino-terminal Domain upon Intracellular Chloride Depletion.
D. Pacheco-Alvarez, P. S. Cristobal, P. Meade, E. Moreno, N. Vazquez, E. Munoz, A. Diaz, M. E. Juarez, I. Gimenez, and G. Gamba (2006)
J. Biol. Chem. 281, 28755-28763
   Abstract »    Full Text »    PDF »
Dietary Electrolyte-Driven Responses in the Renal WNK Kinase Pathway In Vivo.
M. O'Reilly, E. Marshall, T. MacGillivray, M. Mittal, W. Xue, C. J. Kenyon, and R. W. Brown (2006)
J. Am. Soc. Nephrol. 17, 2402-2413
   Abstract »    Full Text »    PDF »
WNK1 and OSR1 regulate the Na+, K+, 2Cl- cotransporter in HeLa cells.
A. N. Anselmo, S. Earnest, W. Chen, Y.-C. Juang, S. C. Kim, Y. Zhao, and M. H. Cobb (2006)
PNAS 103, 10883-10888
   Abstract »    Full Text »    PDF »
WNK1 Affects Surface Expression of the ROMK Potassium Channel Independent of WNK4.
G. Cope, M. Murthy, A. P. Golbang, A. Hamad, C.-H. Liu, A. W. Cuthbert, and K. M. O'Shaughnessy (2006)
J. Am. Soc. Nephrol. 17, 1867-1874
   Abstract »    Full Text »    PDF »
WNK kinases influence TRPV4 channel function and localization.
Y. Fu, A. Subramanya, D. Rozansky, and D. M. Cohen (2006)
Am J Physiol Renal Physiol 290, F1305-F1314
   Abstract »    Full Text »    PDF »
WNK1 kinase isoform switch regulates renal potassium excretion.
J. B. Wade, L. Fang, J. Liu, D. Li, C.-L. Yang, A. R. Subramanya, D. Maouyo, A. Mason, D. H. Ellison, and P. A. Welling (2006)
PNAS 103, 8558-8563
   Abstract »    Full Text »    PDF »
WNK signaling in the distal tubule: an inhibitory cascade regulating salt transport.
A. S. L. Yu (2006)
Am J Physiol Renal Physiol 290, F617-F618
   Full Text »    PDF »
WNK3, a kinase related to genes mutated in hereditary hypertension with hyperkalaemia, regulates the K+ channel ROMK1 (Kir1.1).
Q. Leng, K. T. Kahle, J. Rinehart, G. G. MacGregor, F. H. Wilson, C. M. Canessa, R. P. Lifton, and S. C. Hebert (2006)
J. Physiol. 571, 275-286
   Abstract »    Full Text »    PDF »
Dominant-negative regulation of WNK1 by its kidney-specific kinase-defective isoform.
A. R. Subramanya, C.-L. Yang, X. Zhu, and D. H. Ellison (2006)
Am J Physiol Renal Physiol 290, F619-F624
   Abstract »    Full Text »    PDF »
Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms.
A. Lazrak, Z. Liu, and C.-L. Huang (2006)
PNAS 103, 1615-1620
   Abstract »    Full Text »    PDF »
Familial Hyperkalemic Hypertension.
J. Hadchouel, C. Delaloy, S. Faure, J.-M. Achard, and X. Jeunemaitre (2006)
J. Am. Soc. Nephrol. 17, 208-217
   Full Text »    PDF »
Volume sensitivity of cation-Cl- cotransporters is modulated by the interaction of two kinases: Ste20-related proline-alanine-rich kinase and WNK4.
K. B. E. Gagnon, R. England, and E. Delpire (2006)
Am J Physiol Cell Physiol 290, C134-C142
   Abstract »    Full Text »    PDF »
WNK1 Regulates Phosphorylation of Cation-Chloride-coupled Cotransporters via the STE20-related Kinases, SPAK and OSR1.
T. Moriguchi, S. Urushiyama, N. Hisamoto, S.-i. Iemura, S. Uchida, T. Natsume, K. Matsumoto, and H. Shibuya (2005)
J. Biol. Chem. 280, 42685-42693
   Abstract »    Full Text »    PDF »
Association of Blood Pressure With Genetic Variation in WNK Kinases in a White European Population.
H. Zhang and J. A. Staessen (2005)
Circulation 112, 3371-3372
   Full Text »    PDF »
WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl- cotransporters required for normal blood pressure homeostasis.
J. Rinehart, K. T. Kahle, P. de los Heros, N. Vazquez, P. Meade, F. H. Wilson, S. C. Hebert, I. Gimenez, G. Gamba, and R. P. Lifton (2005)
PNAS 102, 16777-16782
   Abstract »    Full Text »    PDF »
WNK3 modulates transport of Cl- in and out of cells: Implications for control of cell volume and neuronal excitability.
K. T. Kahle, J. Rinehart, P. de los Heros, A. Louvi, P. Meade, N. Vazquez, S. C. Hebert, G. Gamba, I. Gimenez, and R. P. Lifton (2005)
PNAS 102, 16783-16788
   Abstract »    Full Text »    PDF »
WNK1 Activates SGK1 by a Phosphatidylinositol 3-Kinase-dependent and Non-catalytic Mechanism.
B.-e. Xu, S. Stippec, A. Lazrak, C.-L. Huang, and M. H. Cobb (2005)
J. Biol. Chem. 280, 34218-34223
   Abstract »    Full Text »    PDF »
Properties of WNK1 and Implications for Other Family Members.
L. Y. Lenertz, B.-H. Lee, X. Min, B.-e Xu, K. Wedin, S. Earnest, E. J. Goldsmith, and M. H. Cobb (2005)
J. Biol. Chem. 280, 26653-26658
   Abstract »    Full Text »    PDF »
WNK1 activates SGK1 to regulate the epithelial sodium channel.
B.-e Xu, S. Stippec, P.-Y. Chu, A. Lazrak, X.-J. Li, B.-H. Lee, J. M. English, B. Ortega, C.-L. Huang, and M. H. Cobb (2005)
PNAS 102, 10315-10320
   Abstract »    Full Text »    PDF »
Haplotypes of the WNK1 gene associate with blood pressure variation in a severely hypertensive population from the British Genetics of Hypertension study.
S. J. Newhouse, C. Wallace, R. Dobson, C. Mein, J. Pembroke, M. Farrall, D. Clayton, M. Brown, N. Samani, A. Dominiczak, et al. (2005)
Hum. Mol. Genet. 14, 1805-1814
   Abstract »    Full Text »    PDF »
Identification of WNK1 as a Substrate of Akt/Protein Kinase B and a Negative Regulator of Insulin-stimulated Mitogenesis in 3T3-L1 Cells.
Z. Y. Jiang, Q. L. Zhou, J. Holik, S. Patel, J. Leszyk, K. Coleman, M. Chouinard, and M. P. Czech (2005)
J. Biol. Chem. 280, 21622-21628
   Abstract »    Full Text »    PDF »
Molecular Physiology and Pathophysiology of Electroneutral Cation-Chloride Cotransporters.
G. Gamba (2005)
Physiol Rev 85, 423-493
   Abstract »    Full Text »    PDF »
Role of WNK kinases in regulating tubular salt and potassium transport and in the development of hypertension.
G. Gamba (2005)
Am J Physiol Renal Physiol 288, F245-F252
   Abstract »    Full Text »    PDF »
The kidney-specific WNK1 isoform is induced by aldosterone and stimulates epithelial sodium channel-mediated Na+ transport.
A. Naray-Fejes-Toth, P. M. Snyder, and G. Fejes-Toth (2004)
PNAS 101, 17434-17439
   Abstract »    Full Text »    PDF »
The Kinase Activity of Kinase Suppressor of Ras1 (KSR1) Is Independent of Bound MEK.
H. R. Xing, L. Campodonico, and R. Kolesnick (2004)
J. Biol. Chem. 279, 26210-26214
   Abstract »    Full Text »    PDF »
Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins.
K. Yamauchi, T. Rai, K. Kobayashi, E. Sohara, T. Suzuki, T. Itoh, S. Suda, A. Hayama, S. Sasaki, and S. Uchida (2004)
PNAS 101, 4690-4694
   Abstract »    Full Text »    PDF »
Characterization of OSR1, a Member of the Mammalian Ste20p/Germinal Center Kinase Subfamily.
W. Chen, M. Yazicioglu, and M. H. Cobb (2004)
J. Biol. Chem. 279, 11129-11136
   Abstract »    Full Text »    PDF »
WNK1 Activates ERK5 by an MEKK2/3-dependent Mechanism.
B.-e. Xu, S. Stippec, L. Lenertz, B.-H. Lee, W. Zhang, Y.-K. Lee, and M. H. Cobb (2004)
J. Biol. Chem. 279, 7826-7831
   Abstract »    Full Text »    PDF »
RhoA Binds to the Amino Terminus of MEKK1 and Regulates Its Kinase Activity.
E. D. Gallagher, S. Gutowski, P. C. Sternweis, and M. H. Cobb (2004)
J. Biol. Chem. 279, 1872-1877
   Abstract »    Full Text »    PDF »
Multiple Promoters in the WNK1 Gene: One Controls Expression of a Kidney-Specific Kinase-Defective Isoform.
C. Delaloy, J. Lu, A.-M. Houot, S. Disse-Nicodeme, J.-M. Gasc, P. Corvol, and X. Jeunemaitre (2003)
Mol. Cell. Biol. 23, 9208-9221
   Abstract »    Full Text »    PDF »
WNK kinases, distal tubular ion handling and hypertension.
S. Faure, C. Delaloy, V. Leprivey, J. Hadchouel, D. G. Warnock, X. Jeunemaitre, and J.-M. Achard (2003)
Nephrol. Dial. Transplant. 18, 2463-2467
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882